1
|
Zheng H, Wu H, Wang D, Wang S, Ji D, Liu X, Gao G, Su X, Zhang Y, Ling Y. Research progress of prodrugs for the treatment of cerebral ischemia. Eur J Med Chem 2024; 272:116457. [PMID: 38704941 DOI: 10.1016/j.ejmech.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
It is well-known that pharmacotherapy plays a pivotal role in the treatment and prevention of cerebral ischemia. Nevertheless, existing drugs, including numerous natural products, encounter various challenges when applied in cerebral ischemia treatment. These challenges comprise poor brain absorption due to low blood-brain barrier (BBB) permeability, limited water solubility, inadequate bioavailability, poor stability, and rapid metabolism. To address these issues, researchers have turned to prodrug strategies, aiming to mitigate or eliminate the adverse properties of parent drug molecules. In vivo metabolism or enzymatic reactions convert prodrugs into active parent drugs, thereby augmenting BBB permeability, improving bioavailability and stability, and reducing toxicity to normal tissues, ultimately aiming to enhance treatment efficacy and safety. This comprehensive review delves into multiple effective prodrug strategies, providing a detailed description of representative prodrugs developed over the past two decades. It underscores the potential of prodrug approaches to improve the therapeutic outcomes of currently available drugs for cerebral ischemia. The publication of this review serves to enrich current research progress on prodrug strategies for the treatment and prevention of cerebral ischemia. Furthermore, it seeks to offer valuable insights for pharmaceutical chemists in this field, offer guidance for the development of drugs for cerebral ischemia, and provide patients with safer and more effective drug treatment options.
Collapse
Affiliation(s)
- Hongwei Zheng
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Hongmei Wu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dezhi Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Sijia Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dongliang Ji
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xiao Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Ge Gao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xing Su
- Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yanan Zhang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yong Ling
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| |
Collapse
|
2
|
Zhang S, Zhang J, Wei D, An H, Liu W, Lai Y, Yang T, Shao W, Huang Y, Wang L, Dou F, Peng D, Zhang Z. Dengzhan Shengmai capsules and their active component scutellarin prevent cognitive decline in APP/PS1 mice by accelerating Aβ aggregation and reducing oligomers formation. Biomed Pharmacother 2019; 121:109682. [PMID: 31810113 DOI: 10.1016/j.biopha.2019.109682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
There is currently no effective treatment to prevent the progress of Alzheimer's disease (AD). The traditional Chinese herbs Dengzhan Shengmai (DZSM) capsules and their active component scutellarin possess multiple effects and are clinically used for the treatment of cerebrovascular diseases. Scutellarin has been reported to affect Aβ aggregation. However, the effects of DZSM capsules on AD remain unknown. Through in vivo experiments, our study proved that the alleviating effects of DZSM capsules on cognitive deficits of AD mice were due to the role of scutellarin, which up-regulated low toxic amyloid plaques and down-regulated highly toxic soluble Aβ42 and Aβ40 levels in cortex. In vitro, we confirmed scutellarin's role in accelerating transforming Aβ42 monomers into high-molecular-mass aggregates by biochemical assays, which supported the results observed in drug-treated APP/PS1 mice. In detail, the 1:10 ratio of scutellarin/Aβ42 mixtures promoted production of large β-sheet-rich fibrils whereas the 1:1 ratio promoted production of protofibrils. In addition, the binding between scutellarin and Aβ monomers was quantified by microscale thermophoresis test and the apparent dissociation constant (Kd) was 1284.4 ± 238.8 μM. What's more, binding regions between scutellarin and Aβ fibrils were predicted by computational docking models and scutellarin might bind parallel to the long axis of Aβ42 fibrils targeting hydrophobic grooves at residues 35-36 or 39. In conclusion, DZSM capsules protected against cognitive defects of AD through scutellarin-mediated acceleration of Aβ aggregation into fibrils or protofibrils and reduction of soluble Aβ oligomers, thus suggesting potential clinical applications of DZSM capsules and scutellarin in the treatment of AD.
Collapse
Affiliation(s)
- Shujuan Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China; Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing 100029, China
| | - Jianxiang Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Dongfeng Wei
- BABRI Centre, Beijing Normal University, Beijing 100875, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiting An
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Wei Liu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Yihui Lai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Te Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Wen Shao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China; Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing 100029, China
| | - Yaping Huang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China; Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing 100029, China
| | - Lei Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China; Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing 100029, China
| | - Fei Dou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Dantao Peng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China; Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing 100029, China.
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|