1
|
Hsiao G, Chi WC, Chang CH, Chiang YR, Fu YJ, Lee TH. Bioactive pulvinones from a marine algicolous fungus Aspergillus terreus NTU243. PHYTOCHEMISTRY 2022; 200:113229. [PMID: 35568258 DOI: 10.1016/j.phytochem.2022.113229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Marine fungi are regarded as an under-explored source of structurally interesting and bioactive natural products with the potential to provide attractive lead compounds for drug discovery. In this study, several fungal strains were isolated from marine algae collected from the northeastern coast of Taiwan. In the preliminary antimicrobial screening against bacteria and fungi, the ethyl acetate extract of the fermented products of Aspergillus terreus NTU243 derived from a green alga Ulva lactuca was found to exhibit significant antimicrobial activities. Therefore, bioassay-guided separations of the active principle from liquid and solid fermented products of A. terreus NTU243 were undertaken, which resulted in the isolation and purification of 16 compounds. Their structures were elucidated by spectroscopic analysis to be four previously undescribed aspulvinones S-V as well as twelve known compounds. All the isolates were assessed for anti-inflammatory activity by measuring the amount of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 cells, and aspulvinone V, butyrolactone I, and (+)-terrein inhibited 45.0%, 34.5%, and 49.2% of NO production, respectively, at 10 μM concentration. Additionally, zymography showed that the conditioned medium of THP-1 cells post-LPS challenged significantly enhanced matrix metalloproteinase (MMP)-9-mediated gelatinolysis, and pretreatment with aspulvinones U and V significantly attenuated MMP-9-mediated gelatinolysis by 56.0% and 67.8%, separately.
Collapse
Affiliation(s)
- George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Wei-Chiung Chi
- Department of Food Science, National Quemoy University, Kinmen, 89250, Taiwan.
| | - Chia-Hao Chang
- Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan.
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academic Sinica, Taipei, 11529, Taiwan.
| | - Yan-Jie Fu
- Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan.
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
2
|
Ábrego-Gacía A, Poggi-Varaldo HM, Robles-González V, Ponce-Noyola T, Calva-Calva G, Ríos-Leal E, Estrada-Bárcenas D, Mendoza-Vargas A. Lovastatin as a supplement to mitigate rumen methanogenesis: an overview. J Anim Sci Biotechnol 2021; 12:123. [PMID: 34911584 PMCID: PMC8675506 DOI: 10.1186/s40104-021-00641-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/03/2021] [Indexed: 11/23/2022] Open
Abstract
Methane from enteric fermentation is the gas with the greatest environmental impact emitted by ruminants. Lovastatin (Lv) addition to feedstocks could be a strategy to mitigate rumen methane emissions via decreasing the population of methanogenic archaea (MA). Thus, this paper provides the first overview of the effects of Lv supplementation, focusing on the inhibition of methane production, rumen microbiota, and ruminal fermentation. Results indicated that Lv treatment had a strong anti-methanogenic effect on pure strains of MA. However, there are uncertainties from in vitro rumen fermentation trials with complex substrates and rumen inoculum. Solid-state fermentation (SSF) has emerged as a cost-effective option to produce Lv. In this way, SSF of agricultural residues as an Lv-carrier supplement in sheep and goats demonstrated a consistent decrease in ruminal methane emissions. The experimental evidence for in vitro conditions showed that Lv did not affect the volatile fatty acids (VFA). However, in vivo experiments demonstrated that the production of VFA was decreased. Lv did not negatively affect the digestibility of dry matter during in vitro and in vivo methods, and there is even evidence that it can induce an increase in digestibility. Regarding the rumen microbiota, populations of MA were reduced, and no differences were detected in alpha and beta diversity associated with Lv treatment. However, some changes in the relative abundance of the microbiota were induced. Further studies are recommended on: (i) Lv biodegradation products and stability, as well as its adsorption onto the solid matter in the rumen, to gain more insight on the “available” or effective Lv concentration; and (ii) to determine whether the effect of Lv on ruminal fermentation also depends on the feed composition and different ruminants.
Collapse
Affiliation(s)
- Amaury Ábrego-Gacía
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico.,Environmental Biotechnology and Renewable Energies Group, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Héctor M Poggi-Varaldo
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico. .,Environmental Biotechnology and Renewable Energies Group, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico.
| | - Vania Robles-González
- Instituto de Hidrología, Universidad Tecnológica de la Mixteca, Oaxaca, 69000, Huajuapan de León, Mexico
| | - Teresa Ponce-Noyola
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Graciano Calva-Calva
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Elvira Ríos-Leal
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Daniel Estrada-Bárcenas
- National Collection of Microbial and Cellular Cultures, CINVESTAV-IPN, P.O.Box17-740, 07000, Mexico City, Mexico
| | - Alfredo Mendoza-Vargas
- Unidad de Secuenciación e Identificación de Polimorfismos, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| |
Collapse
|
3
|
Liu BY, Xu F, Bai J, Yan DJ, Zhang L, Zhang D, Hu YC. Six new monacolin analogs from red yeast rice. Chin J Nat Med 2019; 17:394-400. [PMID: 31171275 DOI: 10.1016/s1875-5364(19)30046-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 11/29/2022]
Abstract
Six novel monacolin analogs, monacolins V1-V6 (1-6), together with seven known ones (7-13), were isolated from the ethyl acetate extract of red yeast rice. Their structures and absolute configurations were determined by spectroscopic methods, especially 2D NMR (1H-1HCOSY, HSQC, HMBC, and NOESY/ROESY) and CD spectroscopic analyses as well as chemical derivation. Monacolins V2 (2) and V3 (3) represent the first examples of monacolins with 3-hydroxybutyrate substitute. The anti-inflammatory inhibitory activities against the lipopolysaccharide (LPS) induced NO production in BV-2 cells as well as antioxidant activities against rat liver microsomal lipid peroxidation were evaluated.
Collapse
Affiliation(s)
- Bing-Yu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fei Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dao-Jiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Le Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - You-Cai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Microbial transformation of glycyrrhetinic acid and potent neural anti-inscommatory activity of the metabolites. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Liu J, Tang W, Chen R, Dai J. Microbial Transformation of 14-Anhydrodigoxigenin by Alternaria alternata. Chem Biodivers 2016; 12:1871-80. [PMID: 26663840 DOI: 10.1002/cbdv.201500024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 12/17/2022]
Abstract
The microbial transformation of 14-anhydrodigoxigenin (1) by Alternaria alternata CGMCC 3.577 led to the production of seven new metabolites, 2-8. Their structures were determined by extensive spectroscopic (CD, IR, 1D- and 2D-NMR, and HR-ESI-MS) data analyses. The reactions in the bioprocess exhibited diversity, including specific oxidation, hydroxylation, reduction, epoxidation, and dehydration. In addition, a hypothetical biocatalytic pathway is proposed.
Collapse
Affiliation(s)
- Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China, (phone: +86-10-63165195; fax: +86-10-63017757).,Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Wanxia Tang
- Institute of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China, (phone: +86-10-63165195; fax: +86-10-63017757).,Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China, (phone: +86-10-63165195; fax: +86-10-63017757). .,Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| |
Collapse
|
6
|
Adpressa DA, Loesgen S. Bioprospecting Chemical Diversity and Bioactivity in a Marine DerivedAspergillus terreus. Chem Biodivers 2016; 13:253-9. [DOI: 10.1002/cbdv.201500310] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/11/2015] [Indexed: 11/12/2022]
|
7
|
Rabhi C, Arcile G, Cariel L, Lenoir C, Bignon J, Wdzieczak-Bakala J, Ouazzani J. Antiangiogenic-Like Properties of Fermented Extracts of Ayurvedic Medicinal Plants. J Med Food 2015; 18:1065-72. [DOI: 10.1089/jmf.2014.0128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Guillaume Arcile
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Gif-sur-Yvette, France
| | | | - Christine Lenoir
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Gif-sur-Yvette, France
| | - Jérome Bignon
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Gif-sur-Yvette, France
| | - Joanna Wdzieczak-Bakala
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Gif-sur-Yvette, France
| | - Jamal Ouazzani
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Gif-sur-Yvette, France
| |
Collapse
|
8
|
The new halolactones and hydroxylactone with trimethylcyclohexene ring obtained through combined chemical and microbial processes. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system. Molecules 2012; 17:9741-53. [PMID: 22893020 PMCID: PMC6268817 DOI: 10.3390/molecules17089741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 11/24/2022] Open
Abstract
Bicyclic chloro-, bromo- and iodo-γ-lactones with dimethylcyclohexane rings were used as substrates for bioconversion by several fungal strains (Fusarium, Botrytis and Beauveria). Most of the selected microorganisms transformed these lactones by hydrolytic dehalogenation into the new compound cis-2-hydroxy-4,6-dimethyl-9-oxabicyclo[4.3.0]- nonan-8-one, mainly the (−)-isomer. When iodo-γ-lactone was used as the substrate, two products were observed: a hydroxy-γ-lactone and an unsaturated lactone. The structures of all substrates and products were established on the basis of their spectral data. The mechanism of dehalogenation of three halolactones was also studied.
Collapse
|