1
|
Deshmukh R, Deshmane S, Sawant A, Deshmane S, Jain S. Transforming canagliflozin solubility using lipidic carrier and its pharmacokinetic study. Pharm Dev Technol 2024; 29:1175-1184. [PMID: 39636162 DOI: 10.1080/10837450.2024.2436184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The European Medicine Agency has approved canagliflozin (CGF) drug to improve glycemic control in patients with type II diabetes. Our study aimed to enhance the solubility and pharmacokinetics of canagliflozin. Since crystalline canagliflozin is insoluble in water, its absolute bioavailability is less than 65%. Gelucire 50/13 was used as a lipid-based drug carrier to create solid dispersions of canagliflozin. SEM, PXRD, and DSC analysis all pointed to canagliflozin as having a crystal structure. Fusion and solvent evaporation methods were used to prepare the solid dispersions. In solid dispersions, the medication was found to be amorphized according to SEM, DSC, and PXRD studies. The water solubility of canagliflozin increased significantly by 11-23 fold using the solvent evaporation approach and by 12-25 fold using the fusion method. The pharmacokinetic parameters are improved at higher concentrations of gelucire. With pure canagliflozin, the AUC values climbed over 4 h (tmax) to 23440 µgh/mL, while with GDF 1:7, they grew to 52217. Gelucire 50/13 is an excellent option as a biomaterial carrier for drug delivery systems that use solid dispersion because it enhances biological membrane penetration. By dispersing the canagliflozin and gelucire, bioavailability may be enhanced by the fusion process that achieves molecular binding.
Collapse
Affiliation(s)
- Rutuja Deshmukh
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Subhash Deshmane
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Atish Sawant
- Research and Development Centre, Cipla, Mumbai, India
| | - Snehal Deshmane
- Department of Quality Assurance, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Shirish Jain
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| |
Collapse
|
2
|
Liu Y, Wang X, Zhao C, Wang S, Lian X, Chen W, He L, Chen M, Wu S, Gong J. Preparation of tenofovir amibufenamide fumarate spherical particles to improve tableting performance and sticking propensity by designing a spherical crystallization process. Int J Pharm 2024; 665:124709. [PMID: 39306204 DOI: 10.1016/j.ijpharm.2024.124709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Tenofovir amibufenamide fumarate (TMF) is the first oral drug developed in Asia for the treatment of adult patients with chronic viral hepatitis B, however, further applications are limited by poor tableting performance and high sticking propensity. In this work, the spherulitic growth process of TMF has been designed and explored with the help of molecular dynamics simulation and process analysis technologies (ATR-FTIR, FBRM and EasyViewer). The spherical particles with high bulk density, good flowability and uniform particle size distribution are prepared by a simple quenching process. More importantly, experimental results show that spherical particles have higher average tensile strength (100.8% increase), higher plastic deformability and lower amount of punch sticking (87.4% decrease in 30 tablets) compared to the commercial powder products. These contributions not only shed light on the design principle of drug spherulitic growth processes, but also provide guidance for the manufacture of high-quality tablet products.
Collapse
Affiliation(s)
- Yanbo Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xiaolei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Jiangsu Hansoh Pharmaceutical Group Co., Ltd, Jiangsu 222047, China
| | - Chenyang Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shuo Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xiaogang Lian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Jiangsu Hansoh Pharmaceutical Group Co., Ltd, Jiangsu 222047, China
| | - Weiqi Chen
- Jiangsu Hansoh Pharmaceutical Group Co., Ltd, Jiangsu 222047, China
| | - Lei He
- Jiangsu Hansoh Pharmaceutical Group Co., Ltd, Jiangsu 222047, China
| | - Mingyang Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Vemula SK, Daravath B, Repka M. Quality by design (QbD) approach to develop fast-dissolving tablets using melt-dispersion paired with surface-adsorption method: formulation and pharmacokinetics of flurbiprofen melt-dispersion granules. Drug Deliv Transl Res 2023; 13:3204-3222. [PMID: 37458973 DOI: 10.1007/s13346-023-01382-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 11/05/2023]
Abstract
Developing amorphous solid dispersions with good flow properties is always challenging for formulation scientists to convert into tablets. Hence, the present study investigates the impact of the combination of melt-dispersion and surface-adsorption methods to prepare melt-dispersion granules with enhanced dissolution rate and flow properties. This study covers the formulation and pharmacokinetic study of fast-dissolving flurbiprofen tablets using PEG 6000 (hydrophilic carrier) and lactose (adsorbent). Response surface methodology (RSM) using the central composite design (CCD) was used to optimize independent variables like carrier concentrations and adsorbent concentrations, and their interactions with the dependent variables (responses), including solubility, angle of repose, Carr's index, and cumulative % drug release, were investigated. The optimized formulation was selected based on the numerical optimization method and further investigated for FTIR spectroscopy, differential scanning calorimetry, and X-ray diffractometry. Then, the optimized formulation was compressed into tablets and evaluated for both in vitro dissolution and in vivo pharmacokinetics parameters. In vitro dissolution studies revealed that the prepared fast-dissolving tablets released the drug entirely within 15 min (Q15 of F4 tablets: 99.34 ± 1.24%), whereas conventional tablets took around 60 min for complete dissolution. Pharmacokinetic studies in rats revealed that fast-dissolving tablets showed 1.38-fold higher peak-plasma concentration (Cmax) and 1.39-fold higher bioavailability than conventional tablets. Overall, this study revealed the successful fabrication of fast-dissolving tablets via melt-dispersion paired with the surface-adsorption method to enhance the flow properties and the dissolution rate.
Collapse
Affiliation(s)
- Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Bhaskar Daravath
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM Deemed to Be University, Rudraram, Patancheru, Sangareddy, Hyderabad, Telangana, India
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
4
|
Garg R, Garg A. Tacrolimus loaded nanostructured lipid carriers using Moringa oleifera seed oil: design, optimization and in-vitro evaluations. J Microencapsul 2023; 40:502-516. [PMID: 37366651 DOI: 10.1080/02652048.2023.2231075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
The proposed research aims to develop Tacrolimus-loaded nanostructured lipid carriers (TAC-loaded NLCs) to overcome poor aqueous solubility and dissolution rate to enhance its oral absorption. A central composite design was used to optimise the amount of Poloxamer 188 and D-α-Tocopherol-polyethylene-glycol-succinate (TPGS). The optimised TAC-loaded NLCs contain stearic acid (250 mg), Moringa oleifera (MO) seed oil (50 mg), TAC (Tacrolimus: 10 mg), TPGS (60 mg), and Poloxamer 188 (1% w/v) with a mean diameter of 393.3 ± 29.68 nm, a zeta potential of -18.3 ± 6.19 mV, high entrapment efficiency (92.12 ± 1.14% w/w), and desirability (0.989). TAC-loaded NLCs showed ∼12 times higher drug dissolution efficiency, while in-vitro anti-inflammatory studies showed ∼1.8 times lower IC50 (half-maximal inhibitory concentration) than TAC suspension. The lyophilised TAC-loaded NLCs were found to be stable after 3 months. Thus, the present study concludes the successful encapsulation of TAC in NLCs made of stearic acid and MO seed oil.
Collapse
Affiliation(s)
- Rajat Garg
- Institute of Pharmaceutical Research, GLA University, NH-2 Mathura Delhi Road, P.O-Chaumuhan, Mathura, India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, NH-2 Mathura Delhi Road, P.O-Chaumuhan, Mathura, India
| |
Collapse
|
5
|
Yadav M, Sarolia J, Vyas B, Lalan M, Mangrulkar S, Shah P. Amalgamation of Solid Dispersion and Melt Adsorption Technique: Improved In Vitro and In Vivo Performance of Ticagrelor Tablets. AAPS PharmSciTech 2021; 22:257. [PMID: 34676463 DOI: 10.1208/s12249-021-02138-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Ticagrelor (TG) suffers from low peroral bioabsorption (36%) due to P-gp efflux and poor solubility (10 µg/mL). TG solid dispersion adsorbates (TG-SDAs) were formulated using an amalgamation of solid dispersion and melt adsorption techniques which were simple, economic, scalable, and solvent-free. FTIR indicated no incompatibility between drug and excipients. DSC, XRD, and SEM suggested a reduction in TG crystallinity. Q30min from TG-SUSP and TG-conventional tablets was only 2.30% and 6.59% respectively whereas TG-SDA-based tablets exhibited a significantly higher drug release of 86.47%. Caco-2 permeability studies showed 3.83-fold higher permeability of TG from TG-SDAs. TG-SDA-based tablets exhibited relative bioavailability of 748.53% and 153.43% compared to TG-SUSP and TG-conventional tablets respectively in rats. TG-SDA-based tablets were devoid of any cytotoxicity as indicated by MTT assay and exhibited better antiplatelet activity in rats. Enhanced oral bioavailability of TG-SDAs can be attributed to inhibition of P-gp efflux by PEG 4000, increased wettability, and reduced crystallinity of drug leading to improved drug solubility and dissolution. Improved bioabsorption results in a reduction of dose, cost of therapy as well as dose-related side effects. Thus, SDAs can be considered a promising and scalable approach for the improvement of dissolution rate and solubility of TG. TG-SDAs can be translated to an effective and safe dosage form, whereby its rapid onset of action promotes the prevention of heart attack, stroke, and related ill events in individuals with the acute coronary syndrome. However, scale-up, validation, and clinical-studies are necessary for confirmation of the proof-of-concept.
Collapse
|
6
|
Effect of carrier type and Tween® 80 concentration on the release of silymarin from amorphous solid dispersions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Forster SP, Dippold E, Chiang T. Twin-Screw Melt Granulation for Oral Solid Pharmaceutical Products. Pharmaceutics 2021; 13:pharmaceutics13050665. [PMID: 34066332 PMCID: PMC8148162 DOI: 10.3390/pharmaceutics13050665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
This article highlights the advantages of pharmaceutical continuous melt granulation by twin-screw extrusion. The different melt granulation process options and excipients are described and compared, and a case is made for expanded use of twin-screw melt granulation since it is a flexible and continuous process. Methods for binder selection are profiled with a focus on rheology and physical stability impacts. For twin-screw melt granulation, the mechanism of granulation and process impact on granule properties are described. Pharmaceutical applications of melt granulation ranging from immediate release of soluble and insoluble APIs, taste-masking, and sustained release formulation are reviewed, demonstrating the range of possibilities afforded by twin-screw melt granulation.
Collapse
|
8
|
Shi Z, Alrobaian M, Kazmi I, Afzal O, Altamimi ASA, Al-Abbasi FA, Almalki WH, Baothman AA, Choudhry H, Rahman M, Webster TJ, Beg S. Cationic self-nanoemulsifying formulations of tamoxifen with improved biopharmaceutical attributes and anticancer activity: Systematic development and evaluation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Tabosa AÉGA, Ferreira AS, da Silva NM, da Silva Nascimento DDS, de Moura Ferraz LR, Silva JYR, Junior SA, da Silva RMF, Rolim LA, Rolim-Neto PJ. Prolonged Release of Anti-Retroviral Efavirenz From System Using ZIF-8 as Carrier. Curr HIV Res 2020; 18:396-404. [PMID: 32753016 DOI: 10.2174/1570162x18666200804130734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acquired Immunodeficiency Syndrome (AIDS) is a major public health problem in the world. One of the highly effective drugs in anti-HIV therapy is efavirenz (EFZ), which is classified as Class II according to the Classification System of Biopharmaceuticals, presenting low solubility and high permeability, this being an obstacle related to the drug. OBJECTIVE This study aimed to obtain an innovative system based on EFZ and the Zeolitic Imidazolate Framework (ZIF-8) to use in the development of prolonged-release pharmaceutical forms that can circumvent this problem. METHODS The EFZ: ZIF-8 system was obtained by a selected ex-situ method due to its higher incorporation efficiency. Different characterization techniques corroborated the obtainment of the system, and drug release was analyzed by dissolution testing under sink conditions, the profiles being adjusted to some kinetic models. RESULTS At pH 1.2, the structure of ZIF-8 breaks down rapidly, releasing a large amount of drug within either 3h or short time. In the pH 4.5 and 6.8 medium, the EFZ release from the EFZ: ZIF-8 system obtained in ethanol was prolonged, releasing 95% of the drug in 24h at pH 4.5 and 75% medium at pH 6.8. CONCLUSION It is evident that a promising pH-sensitive system was obtained using ZIF-8 as a novel carrier of EFZ intended for the alternative treatment of AIDS.
Collapse
Affiliation(s)
- Alinne Élida Gonçalves Alves Tabosa
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Aline Silva Ferreira
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Natália Millena da Silva
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Débora Dolores Souza da Silva Nascimento
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Leslie Raphael de Moura Ferraz
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - José Yago Rodrigues Silva
- Laboratory Rare Earths BSTR, Fundamental Departament of Chemistry, Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n - Cidade Universitária, 50740-560, Recife-PE, Brazil
| | - Severino Alves Junior
- Laboratory Rare Earths BSTR, Fundamental Departament of Chemistry, Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n - Cidade Universitária, 50740-560, Recife-PE, Brazil
| | - Rosali Maria Ferreira da Silva
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Larissa Araújo Rolim
- Central Analytical of Drugs, Medicines and Food, Federal University of Vale do São Francisco, Av. José de Sá Maniçoba, s/n, Centro, 56304-917, Petrolina-PE, Brazil
| | - Pedro Jose Rolim-Neto
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| |
Collapse
|
10
|
Antosik-Rogóż A, Szafraniec-Szczęsny J, Gawlak K, Knapik-Kowalczuk J, Paluch M, Jachowicz R. Tabletting solid dispersions of bicalutamide prepared using ball-milling or supercritical carbon dioxide: the interrelationship between phase transition and in-vitro dissolution. Pharm Dev Technol 2020; 25:1109-1117. [PMID: 32686538 DOI: 10.1080/10837450.2020.1797787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The studies were aimed at formulating tablets containing bicalutamide-PVP K-29/32 solid dispersions and accessing the interrelationships between the properties of obtained binary systems in the form of powder and compacts. The effect of the compression of the solid dispersions obtained by either milling or using the supercritical fluid method on the dissolution and phase transition of the drug was investigated. Mechanical stress induced the amorphization of the drug, while the treatment with supercritical carbon dioxide did not cause any phase transition as confirmed by X-ray diffractometry. Co-processing of the drug substance with the carrier resulted in even a 10-fold improvement of the bicalutamide dissolution from the solid dispersions. The release of the drug from tablets was lower than from the corresponding powder system.
Collapse
Affiliation(s)
- Agata Antosik-Rogóż
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Szafraniec-Szczęsny
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Gawlak
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Justyna Knapik-Kowalczuk
- Division of Biophysics and Molecular Physics, Institute of Physics, University of Silesia, Katowice, Poland.,Silesian Centre for Education and Interdisciplinary Research, Chorzow, Poland
| | - Marian Paluch
- Division of Biophysics and Molecular Physics, Institute of Physics, University of Silesia, Katowice, Poland.,Silesian Centre for Education and Interdisciplinary Research, Chorzow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
11
|
de Freitas Neto JL, do Nascimento Gomes Barbosa I, de Melo CG, Ângelos MA, Dos Santos Mendes LM, Ferreira MRA, Rolim LA, Soares LAL, da Silva RMF, Neto PJR. Development of Pediatric Orodispersible Tablets Based on Efavirenz as a New Therapeutic Alternative. Curr HIV Res 2020; 18:342-353. [PMID: 32614748 DOI: 10.2174/1570162x18666200702130449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Efavirenz is the most used medication in the treatment of Acquired Immunodeficiency Syndrome (AIDS). The limited number of pediatric antiretroviral formulations approved by regulatory agencies is the most significant obstacle to adequate and efficient pharmacotherapy for this group of patients. The efavirenz has excellent therapeutic potential, but has low aqueous solubility/bioavailability. METHODS To minimize these limitations, multicomponent systems with β-cyclodextrin and polyvinylpyrrolidone K-30 were obtained. Due to the limited number of pediatric antiretroviral formulations, the development of a pediatric orodispersible tablet is an alternative that is thought easy to administer, since it disintegrates rapidly in the oral cavity. The multicomponent systems were obtained by the method of kneading and characterized by solubility test, X-ray diffraction, differential scanning calorimetry and infrared absorption spectroscopy by Fourier transform. The orodispersible tablets were prepared by direct compression. The quality control of hardness, friability, disintegration, and dissolution was performed. The influence of the components of the formulation on the characteristics of the tablets was evaluated through a 22 factorial design added with three central points, to compare the effect of the dependent variables on the responses. RESULTS An increase in drug solubility was observed, with a decrease in crystallinity. Besides that, an excellent dissolution profile presented with more than 83% of the drug's content dissolved in less than 15 minutes. Satisfactory disintegration time and friability were observed. CONCLUSION It was observed that reduced concentrations of mannitol decreased the hardness and disintegration time of the formulations. The orodispersible tablet composed of efavirenz: β- cyclodextrin: polyvinylpyrrolidone, favors greater absorption and bioavailability. It has several advantages for pediatric patients, as the dosage form disintegrates quickly in the mouth and does not require water for administration, thereby improving patient compliance with the treatment.
Collapse
Affiliation(s)
- José Lourenço de Freitas Neto
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco,
Recife 50740-525, Pernambuco, Brazil
| | - Ilka do Nascimento Gomes Barbosa
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco,
Recife 50740-525, Pernambuco, Brazil
| | - Camila Gomes de Melo
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco,
Recife 50740-525, Pernambuco, Brazil
| | - Matheus Alves Ângelos
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco,
Recife 50740-525, Pernambuco, Brazil
| | - Larissa Morgana Dos Santos Mendes
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco,
Recife 50740-525, Pernambuco, Brazil
| | - Magda Rhayanny Assunção Ferreira
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50740-525, Pernambuco, Brazil
| | - Larissa Araújo Rolim
- Analytical Center of Drugs, Medicines and Food, Federal University of San Francisco Valley, Petrolina 56304-205, Pernambuco, Brazil
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50740-525, Pernambuco, Brazil
| | - Rosali Maria Ferreira da Silva
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco,
Recife 50740-525, Pernambuco, Brazil
| | - Pedro José Rolim Neto
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco,
Recife 50740-525, Pernambuco, Brazil
| |
Collapse
|
12
|
Gelucire: A versatile polymer for modified release drug delivery system. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2018. [DOI: 10.1016/j.fjps.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Shaker MA. Dissolution and bioavailability enhancement of Atorvastatin: Gelucire semi-solid binary system. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Mahajan A, Surti N, Koladiya P. Solid dispersion adsorbate technique for improved dissolution and flow properties of lurasidone hydrochloride: characterization using 32 factorial design. Drug Dev Ind Pharm 2017; 44:463-471. [DOI: 10.1080/03639045.2017.1397687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ashok Mahajan
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Varnama, Vadodara, Gujarat, India
| | - Naazneen Surti
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Varnama, Vadodara, Gujarat, India
| | - Pooja Koladiya
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Varnama, Vadodara, Gujarat, India
| |
Collapse
|
15
|
Shiino K, Fujinami Y, Kimura SI, Iwao Y, Noguchi S, Itai S. Melt Adsorption as a Manufacturing Method for Fine Particles of Wax Matrices without Any Agglomerates. Chem Pharm Bull (Tokyo) 2017; 65:726-731. [PMID: 28768926 DOI: 10.1248/cpb.c17-00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.
Collapse
Affiliation(s)
- Kai Shiino
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yukari Fujinami
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shin-Ichiro Kimura
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasunori Iwao
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Shigeru Itai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
16
|
Screening of process variables to enhance the solubility of famotidine with 2-HydroxyPropyl–β-Cyclodextrin & PVP K-30 by using Plackett–Burman design approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:282-292. [DOI: 10.1016/j.msec.2017.03.238] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/20/2016] [Accepted: 03/25/2017] [Indexed: 01/31/2023]
|
17
|
Cysewski P, Przybyłek M. Selection of effective cocrystals former for dissolution rate improvement of active pharmaceutical ingredients based on lipoaffinity index. Eur J Pharm Sci 2017; 107:87-96. [PMID: 28687528 DOI: 10.1016/j.ejps.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
New theoretical screening procedure was proposed for appropriate selection of potential cocrystal formers possessing the ability of enhancing dissolution rates of drugs. The procedure relies on the training set comprising 102 positive and 17 negative cases of cocrystals found in the literature. Despite the fact that the only available data were of qualitative character, performed statistical analysis using binary classification allowed to formulate quantitative criterions. Among considered 3679 molecular descriptors the relative value of lipoaffinity index, expressed as the difference between values calculated for active compound and excipient, has been found as the most appropriate measure suited for discrimination of positive and negative cases. Assuming 5% precision, the applied classification criterion led to inclusion of 70% positive cases in the final prediction. Since lipoaffinity index is a molecular descriptor computed using only 2D information about a chemical structure, its estimation is straightforward and computationally inexpensive. The inclusion of an additional criterion quantifying the cocrystallization probability leads to the following conjunction criterions Hmix<-0.18 and ΔLA>3.61, allowing for identification of dissolution rate enhancers. The screening procedure was applied for finding the most promising coformers of such drugs as Iloperidone, Ritonavir, Carbamazepine and Enthenzamide.
Collapse
Affiliation(s)
- Piotr Cysewski
- Chair and Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland.
| | - Maciej Przybyłek
- Chair and Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
| |
Collapse
|
18
|
Rao KV, Venkatchalam V. Mucoadhesive biphasic minitablets of cefuroxime axetil: Formulation development, characterization and in vivo bioavailability study. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Sapte S, Pore Y. Inclusion complexes of cefuroxime axetil with β-cyclodextrin: Physicochemical characterization, molecular modeling and effect of l-arginine on complexation. J Pharm Anal 2016; 6:300-306. [PMID: 29403996 PMCID: PMC5762625 DOI: 10.1016/j.jpha.2016.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 12/02/2022] Open
Abstract
The inclusion complexes of poorly water-soluble cephalosporin, cefuroxime axetil (CFA), were prepared with β-cyclodextrin (βCD) with or without addition of l-arginine (ARG) to improve its physicochemical properties. We also investigated the effect of ARG on complexation efficiency (CE) of βCD towards CFA in an aqueous medium through phase solubility behaviour according to Higuchi and Connors. Although phase solubility studies showed AL (linear) type of solubility curve in presence and absence of ARG, the CE and association constant (Ks) of βCD towards CFA were significantly promoted in presence of ARG, justifying its use as a ternary component. The solid systems of CFA with βCD were obtained by spray drying technique with or without incorporation of ARG and characterized by differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), scanning electron microscopy (SEM), and saturation solubility and dissolution studies. The molecular modeling studies provided a better insight into geometry and inclusion mode of CFA inside βCD cavity. The solubility and dissolution rate of CFA were significantly improved upon complexation with βCD as compared to CFA alone. However, ternary system incorporated with ARG performed better than binary system in physicochemical evaluation. In conclusion, ARG could be exploited as a ternary component to improve the physicochemical properties of CFA via βCD complexation.
Collapse
Affiliation(s)
- Sarika Sapte
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad, Maharashtra 415 124, India
| | - Yogesh Pore
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad, Maharashtra 415 124, India
| |
Collapse
|
20
|
Design and characterization of aceclofenac and paracetamol spherical crystals and their tableting properties. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.01.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|