1
|
Koşar M, Karatoprak GŞ, Atlı B, İlgün S, Köngül Şafak E, Öztinen N, Akçakaya Mutlu S, Ak Sakallı E. Unveiling the Antioxidant, Cytotoxic, and Anti-Inflammatory Activities and Chemical Compositional Information of an Invasive Plant: Lycium ferocissimum Miers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1035. [PMID: 38611563 PMCID: PMC11013897 DOI: 10.3390/plants13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
In this study, the antioxidant (DPPH and ABTS radical-scavenging, ferric-reducing, iron (II)-chelating), anti-inflammatory (LPS-induced Raw 264.7 cell line), and cytotoxic activities (Du145 and A549 cell lines) of raw fruit, ripe fruit and leaves of the Lycium ferocissimum species were examined. By using high-pressure liquid chromatography, p-OH benzoic acid, caffeic acid, and rutin were detected in the ethanol and water extracts. For the most active raw fruit ethanol extract, the IC50 in terms of the DPPH-scavenging activity was 0.57 mg/mL, and the ABTS inhibition percentage was 88.73% at a 3 mg/mL concentration. The raw fruit ethanol extract exhibited significant inhibition of viability in the Du145 cell line in the concentration range of 62.5-1000 µg/mL. Additionally, the extract effectively reduced the LPS-induced inflammation parameters (TNF-α, IFN-γ, PGE 2, and NO) at a concentration of 31.25 µg/mL. The biological activities of L. ferocissimum, which have been elucidated for the first time, have yielded promising results.
Collapse
Affiliation(s)
- Müberra Koşar
- Department of Pharmacognosy, Faculty of Pharmacy, Eastern Mediterranean University, North Cyprus, Via Mersin-10, 99628 Famagusta, Türkiye; (B.A.); (N.Ö.); (E.A.S.)
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Türkiye; (G.Ş.K.); (E.K.Ş.)
| | - Beste Atlı
- Department of Pharmacognosy, Faculty of Pharmacy, Eastern Mediterranean University, North Cyprus, Via Mersin-10, 99628 Famagusta, Türkiye; (B.A.); (N.Ö.); (E.A.S.)
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Türkiye; (S.İ.); (S.A.M.)
| | - Esra Köngül Şafak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Türkiye; (G.Ş.K.); (E.K.Ş.)
| | - Nesrin Öztinen
- Department of Pharmacognosy, Faculty of Pharmacy, Eastern Mediterranean University, North Cyprus, Via Mersin-10, 99628 Famagusta, Türkiye; (B.A.); (N.Ö.); (E.A.S.)
| | - Sena Akçakaya Mutlu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Türkiye; (S.İ.); (S.A.M.)
| | - Ezgi Ak Sakallı
- Department of Pharmacognosy, Faculty of Pharmacy, Eastern Mediterranean University, North Cyprus, Via Mersin-10, 99628 Famagusta, Türkiye; (B.A.); (N.Ö.); (E.A.S.)
| |
Collapse
|
2
|
Gurgul A, Nauman MC, Wu Z, Shetye G, Ma R, Youn I, Souliya O, Bisson J, Johnson JJ, Che CT. Chemical constituents of the stem of Marsypopetalum modestum and their bioactivities. Nat Prod Res 2023; 37:3623-3630. [PMID: 35819993 PMCID: PMC9834434 DOI: 10.1080/14786419.2022.2097229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023]
Abstract
Phytochemical investigation of Marsypopetalum modestum (Annonaceae) led to the isolation of a new phenylpropanoid glycoside, lyciumphenylpropanoid B (10), along with nine known compounds (1-9) from an aqueous methanolic extract of the stem. Most compounds are reported from this genus for the first time. The structures of the isolated compounds were elucidated using spectroscopic methods including NMR spectroscopy, high-resolution mass spectrometry, and quantum chemical electronic circular dichroism (ECD) calculations. Cytotoxic and antitubercular activities of several isolated compounds were evaluated. Dipyrithione (1) displayed anti-mycobacterial (MIC = 0.23 μM) and cytotoxic (IC50 = 0.8 μM in Hep G2 cells; 4.1 μM in HCT 116 cells) activities. Kelampayoside A (8) showed moderate cytotoxic activity against cancer cells.
Collapse
Affiliation(s)
- Aleksandra Gurgul
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, 60612, IL, United States
| | - Mirielle C Nauman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, 60612, IL, United States
| | - Zhenlong Wu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Gauri Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, 60612, IL, United States
| | - Rui Ma
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, 60612, IL, United States
| | - Isoo Youn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, 60612, IL, United States
| | | | - Jonathan Bisson
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, 60612, IL, United States
| | - Jeremy J Johnson
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, 60612, IL, United States
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, 60612, IL, United States
| |
Collapse
|
3
|
The Effects of Lycium chinense, Cuscuta chinensis, Senna tora, Ophiopogon japonicus, and Dendrobium nobile Decoction on a Dry Eye Mouse Model. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081134. [PMID: 36013601 PMCID: PMC9414943 DOI: 10.3390/medicina58081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
Abstract
Background and objective: Dry eye disease (DED) is a relatively common disorder associated with abnormal tear film and the ocular surface that causes ocular irritation, dryness, visual impairment, and damage to the cornea. DED is not a life-threatening disease but causes discomfort and multifactorial disorders in vision that affect daily life. It has been reported that all traditional medicinal plants exhibit anti-inflammatory effects on several diseases. We hypothesized that the decoction ameliorated ocular irritation and decreased cytokine expression in the cornea. This study aimed to investigate the molecular mechanisms of DED and discover a therapeutic strategy to reduce corneal inflammation. Material and Methods: We used a DED mouse model with extraorbital lacrimal gland (ELG) excision and treated the mice with a decoction of five traditional medicines: Lycium chinense, Cuscuta chinensis, Senna tora, Ophiopogon japonicus, and Dendrobium nobile for 3 months. The tear osmolarity and the ocular surface staining were evaluated as indicators of DED. Immunohistochemistry was used to detect the level of inflammation on the cornea. Results: After treatment with the decoction for three months, epithelial erosions and desquamation were reduced, the intact of corneal endothelium was maintained, and tear osmolarity was restored in the eyes. The IL-1β-associated inflammatory response was reduced in the cornea in the DED model. Conclusions: These data suggested that a mixture of traditional medicines might be a novel therapy to treat DED.
Collapse
|
4
|
Agradi S, Draghi S, Cotozzolo E, Barbato O, Castrica M, Quattrone A, Sulce M, Vigo D, Menchetti L, Ceccarini MR, Andoni E, Riva F, Marongiu ML, Curone G, Brecchia G. Goji Berries Supplementation in the Diet of Rabbits and Other Livestock Animals: A Mini-Review of the Current Knowledge. Front Vet Sci 2022; 8:823589. [PMID: 35174242 PMCID: PMC8841604 DOI: 10.3389/fvets.2021.823589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, several nutraceutical substances have received great attention for their potential role in the prevention and treatment of different diseases as well as for their beneficial effects in promoting the health of humans and animals. Goji berries (GBs) are the fruit of Lycium barbarum and other species of Lycium, used in traditional Chinese medicine, and they have recently become very popular in the Occidental world because of their properties, such as anti-aging, antioxidant, anticancer, neuroprotective, cytoprotective, antidiabetic, and anti-inflammatory activities. These effects are essentially evaluated in clinical trials in humans; in experimental animal models, such as mice and rats; and in cell lines in in vitro studies. Only recently has scientific research evaluated the effects of GBs diet supplementation in livestock animals, including rabbits. Although studies in the zootechnical field are still limited and the investigation of the GB mechanisms of action is in an early stage, the results are encouraging. This review includes a survey of the experimental trials that evaluated the effects of the GBs supplementation on reproductive and productive performances, immune system, metabolic homeostasis, and meat quality principally in the rabbit with also some references to other livestock animal species. Evidence supports the idea that GB supplementation could be used in rabbit breeding, although future studies should be conducted to establish the optimal dose to be administered and to assess the sustainability of the use of GBs in the diet of the rabbit.
Collapse
Affiliation(s)
- Stella Agradi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Marta Castrica
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Milan, Italy
| | - Alda Quattrone
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Majlind Sulce
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Tirana, Albania
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Laura Menchetti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Laura Menchetti ;
| | | | - Egon Andoni
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Tirana, Albania
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | | | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | | |
Collapse
|
5
|
Long JT, Fan HX, Zhou ZQ, Sun WY, Li QW, Wang Y, Ma M, Gao H, Zhi H. The major zeaxanthin dipalmitate derivatives from wolfberry. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:746-753. [PMID: 31163996 DOI: 10.1080/10286020.2019.1621855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Zeaxanthin dipalmitate (3) and two zeaxanthin dipalmitate derivatives, including one new compound (1), were obtained from wolfberry [the fruit of Lycium barbarum L. (Solanaceae)]. Their structures were unambiguously elucidated by spectroscopic analyses. Compound 2 is isolated from the genus Lycium for the first time, and its 1D/2D NMR data are firstly reported. All the compounds belong to carotenoids which are a kind of major bioactive constituents in wolfberry and are also responsible for wolfberry's red color.
Collapse
Affiliation(s)
- Jia-Tang Long
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hong-Xia Fan
- College of Traditional Chinese Medicine/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Qing-Wen Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Min Ma
- College of Traditional Chinese Medicine/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
6
|
Quality Control of Xiebai San Standard Decoction Assisted by Network Pharmacology Strategy. Chromatographia 2020. [DOI: 10.1007/s10337-020-03897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Comparative Study of the Chemical Constituents and Bioactivities of the Extracts from Fruits, Leaves and Root Barks of Lycium barbarum. Molecules 2019; 24:molecules24081585. [PMID: 31013650 PMCID: PMC6514792 DOI: 10.3390/molecules24081585] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 01/17/2023] Open
Abstract
The fruits, leaves and root barks of L. barbarum plant are widely used as functional foods and as ingredients in traditional Chinese prescriptions and patent medicines. They are considered to have different pharmacological activities and health benefits because of their diverse constituents. Here, the chemical constituents of the extracts from fruits, leaves and root barks of L. barbarum were compared by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HR-MS). A total of 131 compounds were identified and seven of them were quantified. Among them, 98, 28 and 35 constituents were detected in fruits, leaves and root barks respectively. Dicaffeoylspermidine/spermine derivatives were the most detected compounds (74/131); among them, dicaffeoylspermine isomers and propionyl-dicaffeoylspermidine were found in root barks in very large amounts (e.g., kukoamine B = 10.90 mg/g dry powder); dicaffeoyl-spermidine isomers were detected in fruits/leaves in a high amount, and many of their glycosylated derivatives were mainly detected in fruits. In addition, six saponins from L. barbarum fruits were reported for the first time, and 5,6-dihydrosolasonine was reported for the first time in plants. The activity assays showed that the root bark extract possessed the strongest antioxidative activity and cytotoxicity, which was presumed due to the large amount of dicaffeoylspermine/spermidines in root barks. Fourteen potential bioactive components from fruits were identified by a target cell-based screening method. These results will help to understand the different biological activities of these three parts of L. barbarum plant and will benefit the discovery of new functional components.
Collapse
|
8
|
Lv X, Xia Y, Finel M, Wu J, Ge G, Yang L. Recent progress and challenges in screening and characterization of UGT1A1 inhibitors. Acta Pharm Sin B 2019; 9:258-278. [PMID: 30972276 PMCID: PMC6437557 DOI: 10.1016/j.apsb.2018.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1) is an important conjugative enzyme in mammals that is responsible for the conjugation and detoxification of both endogenous and xenobiotic compounds. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in metabolic disorders of endobiotic metabolism. Therefore, both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have recommended assaying the inhibitory potential of drugs under development on the human UGT1A1 prior to approval. This review focuses on the significance, progress and challenges in discovery and characterization of UGT1A1 inhibitors. Recent advances in the development of UGT1A1 probes and their application for screening UGT1A1 inhibitors are summarized and discussed in this review for the first time. Furthermore, a long list of UGT1A1 inhibitors, including information on their inhibition potency, inhibition mode, and affinity, has been prepared and analyzed. Challenges and future directions in this field are highlighted in the final section. The information and knowledge that are presented in this review provide guidance for rational use of drugs/herbs in order to avoid the occurrence of adverse effects via UGT1A1 inhibition, as well as presenting methods for rapid screening and characterization of UGT1A1 inhibitors and for facilitating investigations on UGT1A1-ligand interactions.
Collapse
|
9
|
Jensen G, Morrill C, Huang Y. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharm Sin B 2018; 8:756-766. [PMID: 30258764 PMCID: PMC6148716 DOI: 10.1016/j.apsb.2018.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and the tissue engineering model have shown promise in improving methods of drug delivery, drug action, and drug discovery in pharmaceutical research for the attenuation of the central nervous system inflammatory response. Such inflammation contributes to the lack of regenerative ability of neural cells, as well as the temporary and permanent loss of function associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review is focused specifically on the recent advances in the tissue engineering model made by altering scaffold biophysical and biochemical properties for use in the treatment of neurodegenerative diseases. A portion of this article will also be spent on the review of recent progress made in extracellular matrix decellularization as a new and innovative scaffold for disease treatment.
Collapse
Affiliation(s)
| | | | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|