1
|
Yu M, Chen S, Shi J, Chen W, Qiu Y, Lan J, Qu S, Feng J, Wang R, Lin F, Huang G, Zheng C. Structures and Biological Activities of Secondary Metabolites from Daldinia spp. J Fungi (Basel) 2024; 10:833. [PMID: 39728329 DOI: 10.3390/jof10120833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
The genus Daldinia have long been recognized as a source of structural novel, pharmaceutically relevant natural products. We reviewed the structures and activities of secondary metabolites isolated from the genus of Daldinia from January 1995 to June 2024, and 280 compounds, including six major categories-terpenoids, alkaloids, polyketides, polyphenols, steroids, and other classes-are presented in this review. Among these metabolites, 196 were identified as new structures. Remarkably, 112 compounds exhibited a range of biological activities, including cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities. This review highlights the bioactive metabolites discovered in the past three decades from the genus of Daldinia while also exploring the potential of these symbiotic fungi as rich sources of novel and diverse natural products. The varying bioactivities of these metabolites offer a vast array of promising lead compounds and also could significantly contribute to the development of new medicines.
Collapse
Affiliation(s)
- Miao Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiji Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jueying Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Weikang Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yikang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jing Lan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiyan Qu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jiayi Feng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Ru Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Fangru Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
2
|
Xie F, Feng Z, Xu B. Metabolic Characteristics of Gut Microbiota and Insomnia: Evidence from a Mendelian Randomization Analysis. Nutrients 2024; 16:2943. [PMID: 39275260 PMCID: PMC11397146 DOI: 10.3390/nu16172943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Insomnia is a common sleep disorder that significantly impacts individuals' sleep quality and daily life. Recent studies have suggested that gut microbiota may influence sleep through various metabolic pathways. This study aims to explore the causal relationships between the abundance of gut microbiota metabolic pathways and insomnia using Mendelian randomization (MR) analysis. This two-sample MR study used genetic data from the OpenGWAS database (205 gut bacterial pathway abundance) and the FinnGen database (insomnia-related data). We identified single nucleotide polymorphisms (SNPs) associated with gut bacterial pathway abundance as instrumental variables (IVs) and ensured their validity through stringent selection criteria and quality control measures. The primary analysis employed the inverse variance-weighted (IVW) method, supplemented by other MR methods, to estimate causal effects. The MR analysis revealed significant positive causal effects of specific carbohydrate, amino acid, and nucleotide metabolism pathways on insomnia. Key pathways, such as gluconeogenesis pathway (GLUCONEO.PWY) and TCA cycle VII acetate producers (PWY.7254), showed positive associations with insomnia (B > 0, p < 0.05). Conversely, pathways like hexitol fermentation to lactate, formate, ethanol and acetate pathway (P461.PWY) exhibited negative causal effects (B < 0, p < 0.05). Multivariable MR analysis confirmed the independent causal effects of these pathways (p < 0.05). Sensitivity analyses indicated no significant pleiotropy or heterogeneity, ensuring the robustness of the results. This study identifies specific gut microbiota metabolic pathways that play critical roles in the development of insomnia. These findings provide new insights into the biological mechanisms underlying insomnia and suggest potential targets for therapeutic interventions. Future research should further validate these causal relationships and explore how modulating gut microbiota or its metabolic products can effectively improve insomnia symptoms, leading to more personalized and precise treatment strategies.
Collapse
Affiliation(s)
- Fuquan Xie
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Zhang J, Tan YM, Li SR, Battini N, Zhang SL, Lin JM, Zhou CH. Discovery of benzopyridone cyanoacetates as new type of potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 265:116107. [PMID: 38171147 DOI: 10.1016/j.ejmech.2023.116107] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Song M, Hua Y, Liu Y, Xiao X, Yu H, Deng X. Design, Synthesis, and Antimicrobial Activity Evaluation of Ciprofloxacin-Indole Hybrids. Molecules 2023; 28:6325. [PMID: 37687154 PMCID: PMC10488977 DOI: 10.3390/molecules28176325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
With the overuse and misuse of antimicrobial drugs, antibacterial resistance is becoming a critical global health problem. New antibacterial agents are effective measures for overcoming the crisis of drug resistance. In this paper, a novel set of ciprofloxacin-indole/acetophenone hybrids was designed, synthesized, and structurally elucidated with the help of NMR and high-resolution mass spectrometry. The in vitro antibacterial activities of these hybrids against gram-positive and gram-negative pathogens, including four multidrug-resistant clinical isolates, were evaluated and compared with those of the parent drug ciprofloxacin (CIP). All the target compounds (MIC = 0.0625-32 μg/mL) exhibited excellent inhibitory activity against the strains tested. Among them, 3a (MIC = 0.25-8 μg/mL) showed comparable or slightly less potent activity than CIP. The most active hybrid, 8b (MIC = 0.0626-1 μg/mL), showed equal or higher activity than CIP. Moreover, compound 8b showed superior bactericidal capability to CIP, with undetectably low resistance frequencies. Furthermore, molecular docking studies conducted showed that 8b and CIP had a similar binding mode to DNA gyrase (Staphylocouccus aureus). Thus, hybrids 3a and 8b could act as a platform for further investigations.
Collapse
Affiliation(s)
- Mingxia Song
- Affiliated Hospital of Jinggangshan University, Ji’an 343000, China; (M.S.)
- Health Science Center, Jinggangshan University, Ji’an 343009, China
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| | - Yi Hua
- Health Science Center, Jinggangshan University, Ji’an 343009, China
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| | - Yuxin Liu
- Affiliated Hospital of Jinggangshan University, Ji’an 343000, China; (M.S.)
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| | - Xunli Xiao
- Affiliated Hospital of Jinggangshan University, Ji’an 343000, China; (M.S.)
| | - Haihong Yu
- Health Science Center, Jinggangshan University, Ji’an 343009, China
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| | - Xianqing Deng
- Affiliated Hospital of Jinggangshan University, Ji’an 343000, China; (M.S.)
- Health Science Center, Jinggangshan University, Ji’an 343009, China
- Center for Clinical Medicine Research of Jinggangshan University, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
5
|
Chemical Investigation of Endophytic Diaporthe unshiuensis YSP3 Reveals New Antibacterial and Cytotoxic Agents. J Fungi (Basel) 2023; 9:jof9020136. [PMID: 36836251 PMCID: PMC9963169 DOI: 10.3390/jof9020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Chemical investigation of the plant-derived endophytic fungus Diaporthe unshiuensis YSP3 led to the isolation of four new compounds (1-4), including two new xanthones (phomopthane A and B, 1 and 2), one new alternariol methyl ether derivative (3) and one α-pyrone derivative (phomopyrone B, 4), together with eight known compounds (5-12). The structures of new compounds were interpreted on the basis of spectroscopic data and single-crystal X-ray diffraction analysis. All new compounds were assessed for their antimicrobial and cytotoxic potential. Compound 1 showed cytotoxic activity against HeLa and MCF-7 cells with IC50 values of 5.92 µM and 7.50 µM, respectively, while compound 3 has an antibacterial effect on Bacillus subtilis (MIC value 16 μg/mL).
Collapse
|
6
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Interactions of fungi with non-isothiocyanate products of the plant glucosinolate pathway: A review on product formation, antifungal activity, mode of action and biotransformation. PHYTOCHEMISTRY 2022; 200:113245. [PMID: 35623473 DOI: 10.1016/j.phytochem.2022.113245] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
The glucosinolate pathway, which is present in the order Brassicales, is one of the most researched defensive natural product biosynthesis pathways. Its core molecules, the glucosinolates are broken down upon pathogen challenge or tissue damage to yield an array of natural products that may help plants defend against the stressor. Though the most widely known glucosinolate decomposition products are the antimicrobial isothiocyanates, there is a wide range of other volatile and non-volatile natural products that arise from this biosynthetic pathway. This review summarizes our current knowledge on the interaction of these much less examined, non-isothiocyanate products with fungi. It deals with compounds including (1) glucosinolates and their biosynthesis precursors; (2) glucosinolate-derived nitriles (e.g. derivatives of 1H-indole-3-acetonitrile), thiocyanates, epithionitriles and oxazolidine-2-thiones; (3) putative isothiocyanate downstream products such as raphanusamic acid, 1H-indole-3-methanol (= indole-3-carbinol) and its oligomers, 1H-indol-3-ylmethanamine and ascorbigen; (4) 1H-indole-3-acetonitrile downstream products such as 1H-indole-3-carbaldehyde (indole-3-carboxaldehyde), 1H-indole-3-carboxylic acid and their derivatives; and (5) indole phytoalexins including brassinin, cyclobrassinin and brassilexin. Herein, a literature review on the following aspects is provided: their direct antifungal activity and the proposed mechanisms of antifungal action, increased biosynthesis after fungal challenge, as well as data on their biotransformation/detoxification by fungi, including but not limited to fungal myrosinase activity.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
7
|
Lin LP, Wu M, Jiang N, Wang W, Tan RX. Carbon-nitrogen bond formation to construct novel polyketide-indole hybrids from the indole-3-carbinol exposed culture of Daldinia eschscholzii. Synth Syst Biotechnol 2022; 7:750-755. [PMID: 35387230 PMCID: PMC8943216 DOI: 10.1016/j.synbio.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
A plenty of cytochrome P450s have been annotated in the Daldinia eschosholzii genome. Inspired by the fact that some P450s have been reported to catalyze the carbon-nitrogen (C-N) bond formation, we were curious about whether hybrids through C-N bond formation could be generated in the indole-3-carbinol (I3C) exposed culture of D. eschscholzii. As expected, two skeletally undescribed polyketide-indole hybrids, designated as indolpolyketone A and B (1 and 2), were isolated and assigned to be constructed through C-N bond formation. Their structures were elucidated by 1D and 2D NMR spectra. The absolute configurations of 1 and 2 were determined by comparing the recorded and calculated electronic circular dichroism (ECD) spectra. Furthermore, the plausible biosynthetic pathways for 1 and 2 were proposed. Compounds 1 and 2 exhibited significant antiviral activity against H1N1 with IC50 values of 45.2 and 31.4 μM, respectively. In brief, compounds 1 and 2 were reported here for the first time and were the first example of polyketide-indole hybrids pieced together through C-N bond formation in the I3C-exposed culture of D. eschscholzii. Therefore, this study expands the knowledge about the chemical production of D. eschscholzii through precursor-directed biosynthesis (PDB).
Collapse
Affiliation(s)
- Li Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Jiang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Wang JP, Shu Y, Liu R, Gan JL, Deng SP, Cai XY, Hu JT, Cai L, Ding ZT. Bioactive sesterterpenoids from the fungus Penicillium roqueforti YJ-14. PHYTOCHEMISTRY 2021; 187:112762. [PMID: 33940379 DOI: 10.1016/j.phytochem.2021.112762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Seven previously undescribed sesterterpenes were characterized from Penicillium roqueforti YJ-14 by solid fermentation. Their structures were initially investigated in detail by spectroscopic analyses and HR-ESI-MS and were further confirmed by X-crystallography. In in vitro bioassays, compounds 1, 5 and 7 showed cytotoxic activity against the MCF-7 breast cancer cell line with IC50 values of 7.98 ± 0.93, 6.42 ± 0.41 and 7.32 ± 0.18 μM, respectively. Compounds 5 and 7 displayed significant cytotoxicity against the A549 lung cancer cell line (IC50 values of 4.83 ± 0.22 μM and 4.58 ± 0.85 μM, respectively). In addition, compound 5 showed an obvious inhibitory effect on nitric oxide production in LPS-activated RAW264.7 macrophages with an IC50 value of 9.53 ± 0.16 μM.
Collapse
Affiliation(s)
- Jia-Peng Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yan Shu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Rui Liu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jun-Li Gan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Si-Ping Deng
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xue-Yun Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jun-Tao Hu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
9
|
Mitochondrial damage produced by phytotoxic chromenone and chromanone derivatives from endophytic fungus Daldinia eschscholtzii strain GsE13. Appl Microbiol Biotechnol 2021; 105:4225-4239. [PMID: 33970316 DOI: 10.1007/s00253-021-11318-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Bioassay-guided fractionation of the organic extracts of the endophyte Daldinia eschscholtzii strain GsE13 led to the isolation of several phytotoxic compounds, including two chromenone and two chromanone derivatives: 5-hydroxy-8-methoxy-2-methyl-4H-chromen-4-one, 1; 5-hydroxy-2-methyl-4H-chromen-4-one, 2; 5-methoxy-2-methyl-chroman-4-one, 3; and 5-methoxy-2-methyl-chroman-4-ol, 4; as well as other aromatic compounds: 4,8-dihydroxy-1-tetralone, 5; 1,8-dimethoxynaphthalene, 6; and 4,9-dihydroxy-1,2,11,12-tetrahydroperyl-ene-3,10-quinone, 7. Compounds 1, 4, and 7 were isolated for the first time from D. eschscholtzii. The phytotoxicity of all the compounds was determined on germination, root growth, and oxygen uptake in seedlings of a monocotyledonous (Panicum miliaceum) and three dicotyledonous plants (Medicago sativa, Trifolium pratense, and Amaranthus hypochondriacus). In general, root growth was the most affected process in all four weeds, and chromenones 1 and 2 were the most phytotoxic compounds. Phytotoxins 1-4 inhibited basal oxygen consumption rate in isolated mitochondria from M. sativa seedlings and also caused serious damage to their membrane potential (ΔΨm) in percentages greater than 50% at concentrations lower than 2 mM. Based on these results, compounds 1-4 of endophytic origin could be promising for the development of new herbicides potentially useful in agriculture or for the synthesis of promising new molecules. KEY POINTS: • Endophytic fungus Daldinia eschscholtzii produces phytotoxic compounds. • Phytotoxins inhibit basal oxygen consumption rate in isolated M. sativa mitochondria. • Phytotoxins altered the mitochondrial membrane potential.
Collapse
|
10
|
Fooladi T, Soudi MR, Hashemi SM, Antunes FAF, Abdeshahian P. Biological function and molecular properties of Pyrenaican SF-1 as biological macromolecule extracted from Daldinia pyrenaica. Int J Biol Macromol 2020; 163:298-308. [PMID: 32603731 DOI: 10.1016/j.ijbiomac.2020.06.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
Abstract
Molecular properties and biological functions of Pyrenaican SF-1 as a novel biological macromolecule extracted from a fungal isolate were studied. The isolate was identified as Daldinia pyrenaica on the basis of 5.8S rDNA sequencing. Pyrenaican SF-1 was obtained from the culture filtrate of the fungal isolate. The partial characterization of biochemical structure of Pyrenaican SF-1 was conducted. The fungal extract was also tested for the treatment of AGS, MDA and HeLa cell lines to assess cells proliferation, cells cycle and apoptosis. Furthermore, Pyrenaican SF-1 extract was tested for its antibacterial and antioxidant activity. Initial chemical analysis revealed that Pyrenaican SF-1 extract was composed of various monosaccharides such as d-glucose, D- mannitol, D-arabinose and β-D-ribopyranose. In vitro study indicated that Pyrenaican SF-1 could effectively elevate percentage of apoptosis and necrosis of cancer cells and block cell cycle phase of the control group. The fungal extract could inhibit proliferation of Hela and MDA cell up to 67% and 56%, respectively. Moreover, Pyrenaican SF-1 represented a strong antioxidant activity compared to that one obtained from vitamin C. On the other hand, Pyrenaican SF-1 exhibited growth inhibitory effects against different Gram-negative and Gram-positive bacterial strains. Pyrenaican SF-1 can be considered as a bioactive macromolecule with promising application in pharmaceutical and medical sectors.
Collapse
Affiliation(s)
- Tayebeh Fooladi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Peyman Abdeshahian
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, Brazil (Under São Paulo Research Foundation - FAPESP, Processo No. 2018/14095-7; 2016/10636-8)
| |
Collapse
|
11
|
Gu G, Cai G, Wang Y, Li L, Bai J, Zhang T, Cen S, Zhang D, Yu L. Daldispones A and B, two new cyclopentenones from Daldinia sp. CPCC 400770. J Antibiot (Tokyo) 2020; 74:215-218. [PMID: 33173167 DOI: 10.1038/s41429-020-00384-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022]
Abstract
Two new cyclopentenone derivatives, daldispones A (1) and B (2) were isolated from the fungus Daldinia sp. CPCC 400770. Their structures and absolute configurations were elucidated by extensive spectroscopic analyses and calculated electronic circular dichroism (ECD). Compounds 1 and 2 exhibited significant anti-influenza A virus activities with IC50 values of 16.0 and 7.4 μM, respectively. Compound 2 showed moderate antibacterial activities against Staphylococcus aureus, Enterococcus faecalis and Bacillus cereus.
Collapse
Affiliation(s)
- Guowei Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guowei Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinglin Bai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dewu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Chehardoli G, Bahmani A. Synthetic strategies, SAR studies, and computer modeling of indole 2 and 3-carboxamides as the strong enzyme inhibitors: a review. Mol Divers 2020; 25:535-550. [PMID: 32394235 PMCID: PMC7214098 DOI: 10.1007/s11030-020-10061-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/21/2020] [Indexed: 02/08/2023]
Abstract
Abstract Indole derivatives have been the focus of many researchers in the study of pharmaceutical compounds for many years. Researchers have investigated the effect of carboxamide moiety at positions 2 and 3, giving unique inhibitory properties to these compounds. The presence of carboxamide moiety in indole derivatives causes hydrogen bonds with a variety of enzymes and proteins, which in many cases, inhibits their activity. In this review, synthetic strategies of indole 2 and 3-carboxamide derivatives, the type, and mode of interaction of these derivatives against HLGP, HIV-1, renin enzyme, and structure–activity studies of these compounds were investigated. It is hoped that indole scaffolds will be tested in the future for maximum activity in pharmacological compounds. Graphic abstract ![]()
Collapse
Affiliation(s)
- Gholamabbas Chehardoli
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Asrin Bahmani
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Xiao BB, Xia GY, Wang LY, Qiu BL, Xia H, Zhong WC, Tian GH, Lin S. (±)-Bicoryanhunine A, dimeric benzylisoquinoline alkaloid atropo-enantiomers from Corydalis yanhusuo. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|