1
|
Zhang W, Zhang K, Feng Y, Zhang G. Global research trends in traditional Chinese medicine therapy for acute leukemia: a comprehensive visualization and bibliometric analysis. Hematology 2024; 29:2427896. [PMID: 39530384 DOI: 10.1080/16078454.2024.2427896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The application of traditional Chinese medicine (TCM) therapy to acute leukemia has been intensively investigated. However, the bibliometric analysis in this field has not been performed. This bibliometric study aimed to comprehensively analyze the research trends and active areas of TCM therapy for acute leukemia from 2000 to 2023. METHODS We searched articles and reviews published between 2000 and 2023 that discussed TCM in acute leukemia from the Web of Science Core Collection (WoSCC). Knowledge mapping and bibliometric analysis were conducted using VOSviewer, CiteSpace software, and R-bibliometrix. RESULTS A total of 1,099 articles were included, with China, the United States, and Korea contributing the most papers. Most papers were published in the Journal of Ethnopharmacology. Meanwhile, China saw a steady increase in the number of publications. The three leading institutions that made outstanding contributions were the China Medical University, the Chinese Academy of Sciences, and the China Academy of Chinese Medical Sciences. Efferth Thomas, Liu Wei, and Liu Jie were the top three productive authors, with Efferth T receiving the most co-citations. The most frequently cited reference was Shen ZX (1997). In the analysis of keywords co-occurrence, 'survival,' 'risk factors,' 'nanoparticles,' and 'metabolism' are the active research topics. CONCLUSION This bibliometric study provides researchers with a comprehensive overview and significant value in understanding the development of TCM in acute leukemia treatment.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department Electrophysiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
| | - Kaili Zhang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guangxi, People's Republic of China
| | - Yuqing Feng
- Department of Medical Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
| | - Gaofeng Zhang
- Department of Medical Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
| |
Collapse
|
2
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024; 264:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Yang H, Chen YX, Linghu KG, Ren PY, Yao YT, Jiang F, Wu GP, Chen TT, Ji YP, Tao L, Sun QY, Li Y, Shen XC. 1,8-Cineole alleviates Nrf2-mediated redox imbalance and mitochondrial dysfunction in diabetes mellitus by targeting Sirt1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156099. [PMID: 39437685 DOI: 10.1016/j.phymed.2024.156099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is primarily attributed to impaired insulin secretion caused by β cell dysfunction. 1,8-Cineole is a key bioactive compound in the essential oil extracted from Fructus Alpiniae Zerumbet, which possesses anti-inflammatory and antioxidant properties. Nevertheless, it remains elusive about the protective effect and precise mechanisms of 1,8-Cineole against the β cell deterioration in T2DM. PURPOSE To investigate the effect of 1,8-Cineole on β cell dysfunction in T2DM and the potential mechanism of its action. METHODS A mouse model of T2DM and a β cell model of high glucose induction were generated to analyze the pharmacological properties of 1,8-Cineole. Proteomic and network pharmacological analyses were conducted to identify the crucial pathways involved in T2DM. Resveratrol [a Sirtuin1 (Sirt1) agonist] and Sirt1 knockdown were used to ascertain the mechanism of 1,8-Cineole in T2DM. The binding affinity of 1,8-Cineole to Sirt1 was assessed with molecular docking, surface plasmon resonance, immunoprecipitation assay, and cellular thermal shift assay. RESULTS Firstly, dysregulated crucial pathways in T2DM were screened out, including redox imbalance and mitochondrial dysfunction. Subsequently, 1,8-Cineole was found to activate Sirt1 and nuclear factor E2-related factor 2 (Nrf2) to repress oxidative stress in both T2DM mice and high glucose-induced β cells, thereby relieving mitochondrial dysfunction and apoptosis. Furthermore, 1,8-Cineole specifically targeted Sirt1 and favored the direct interaction between Sirt1 and Nrf2, ultimately restoring β cell function. CONCLUSIONS Our findings provide the first evidence that 1,8-Cineole directly binds to Sirt1 and enhances its stability, therefore rectifying impaired oxidative homeostasis, and then suppressing mitochondrial dysfunction and apoptosis in T2DM, indicating that 1,8-Cineole may be a potential candidate drug for T2DM treatment.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ke-Gang Linghu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Peng-Yan Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yu-Ting Yao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Feng Jiang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Guo-Ping Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ting-Ting Chen
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yun-Peng Ji
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qian-Yun Sun
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Yue Li
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China.
| |
Collapse
|
4
|
Wu D, Su J, Wang P, Zhai B, Zhao C, Li W, Chen C, Guan J, Cao Z, Song N, Yang H, Zhang Y, Xu H. Exploration on pharmacological mechanisms of YZP against neuropathic pain via inhibiting spinal inflammation and the rationality of its compatibility. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118316. [PMID: 38729540 DOI: 10.1016/j.jep.2024.118316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yuanhu Zhitong Prescription (YZP) is a well-known traditional Chinese medicine (TCM) formula for neuropathic pain (NP) therapy with a satisfying clinical efficacy. However, the underlying pharmacological mechanism and its compatibility principle remain unclear. AIM OF THE STUDY This study aims to investigate the analgesic and compatibility mechanisms of YZP on neuropathic pain (NP) at the gene and biological process levels. MATERIALS AND METHODS The chronic constriction injury (CCI) rats were intragastrically administrated with extracts of YZP, YH and BZ separately, and then mechanical hypersensitivity were measured to evaluate the analgesic effects between YH and BZ before and after compatibility. Then, RNA-seq and bioinformatics analyses were performed to elucidate the potential mechanisms underlying YZP's analgesia and compatibility. Finally, the expression levels and significant differences of key genes were analyzed. RESULTS Behaviorally, both YZP and YH effectively alleviated mechanical allodynia in CCI rats, with YZP being superior to YH. In contrast, we did not observe an analgesic effect of BZ. Genetically, YZP, YH, and BZ reversed the expression levels of 52, 34, and 42 aberrant genes in the spinal cord of CCI rats, respectively. Mechanically, YZP was revealed to alleviate NP mainly by modulating the inflammatory response and neuropeptide signaling pathway, which are the dominant effective processes of YH. Interestingly, the effective targets of YZP were especially enriched in leukocyte activation and cytokine-mediated signaling pathways. Moreover, BZ was found to exert an adjunctive effect in enhancing the analgesic effect of YH by promoting skeletal muscle tissue regeneration and modulating calcium ion transport. CONCLUSIONS YH, as the monarch drug, plays a dominant role in the analgesic effect of YZP that effectively relieves NP by inhibiting the spinal inflammation and neuropeptide signaling pathway. BZ, as the minister drug, not only synergistically enhances analgesic processes of YH but also helps to alleviate the accompanying symptoms of NP. Consequently, YZP exerted a more potent analgesic effect than YH and BZ alone. In conclusion, our findings offer new insights into understanding the pharmacological mechanism and compatibility principle of YZP, which may support its clinical application in NP therapy.
Collapse
Affiliation(s)
- Dan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jin Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baorong Zhai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chengyu Chen
- Jiaheng (Hengqin, Zhuhai) Pharmaceutical Technology Co. Ltd., Zhuhai, 519000, China
| | - Jianli Guan
- Henan Fusen Pharmaceutical Co., Ltd., Nanyang, 474450, China
| | - Zhiming Cao
- Jiaheng (Hengqin, Zhuhai) Pharmaceutical Technology Co. Ltd., Zhuhai, 519000, China
| | - Naining Song
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory for Research and Evaluation of TCM, National Medical Products Administration, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Wu F, Wang Y, Mei Q, Chen Q, Sun C, Lv X, Feng L, Wang C, Zhang Y, Fang B, Huo X, Tian X, Ma X. UGTs-mediated metabolic interactions contribute to enhanced anti-inflammation activity of Jinhongtang. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116016. [PMID: 36535328 DOI: 10.1016/j.jep.2022.116016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinhongtang, a traditional Chinese medicine (TCM) formula consisting of dry stems of Rheum palmatum L. (Polygonaceae) and Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson (Lardizabalaceae) and whole plant of Taraxacum mongolicum Hand.-Mazz. (Asteraceae), is widely used for the treatment of infection diseases including severe sepsis and COVID-19. AIM OF THE STUDY The present study aimed to explore the compatibility mechanism in the prescription of Jinhongtang based on the pharmacokinetic interaction. MATERIALS AND METHODS CLP-induced sepsis mice and LPS-induced RAW264.7 cells were used to explore the anti-inflammatory effect of Jinhongtang and herbs in this clinical prescription. Pharmacokinetics of active components in Jinhongtang (Rhein, Emodin and Aloe emodin) was studied in rats. In vitro analysis of metabolic pathways and interactions mediated by metabolic enzymes were conducted using human liver microsomes (HLMs) and recombinant UGT isoforms. RESULTS Jinhongtang exhibited much more potent anti-inflammatory effect than its single herbs on CLP-induced sepsis mice and LPS-induced RAW264.7 cells. Next, the bioavailability of active ingredients (Rhein, Emodin and Aloe emodin) in R. palmatum was significantly improved through reduced metabolic clearance when co-administered with S. cuneata and T. mongolicum as Jinhongtang during the in vivo pharmacokinetic study, which presented the rational herbal compatibility mechanism. In detailed, the components in S. cuneata and T. mongolicum including Sargentodoxoside A, Chanitracin Ia, Quercetin and Luteolin inhibited the UGT1A9-mediated glucuronidation of active ingredients in R. palmatum, with Ki values of 2.72 μM, 1.25 μM, 2.84 μM and 0.83 μM, respectively. CONCLUSION T. mongolicum and S. cuneata, the adjuvant herbs of Jinhongtang, could reduce the metabolic clearance of key active components of R. palmatum, prolong their action time and further enhance their anti-inflammatory activity via inhibition of UGTs. Our findings provided deep insight for the rational compatibility of TCMs and useful guidance for the development of TCM formula.
Collapse
Affiliation(s)
- Fan Wu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| | - Yan Wang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Quanxi Mei
- Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518102, China.
| | - Qinhua Chen
- Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518102, China.
| | - Chengpeng Sun
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Xia Lv
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Lei Feng
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| | - Chao Wang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Yanyan Zhang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Bangjiang Fang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
6
|
TAN D, WANG J, ZHANG Q, QIN L, WANG Y, HE Y. The role of organic anion transport protein 1a4 in drug delivery and diseases: a review. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | - Lin QIN
- Zunyi Medical University, China
| | - Yuhe WANG
- Affiliated Hospital of Zunyi Medical University
| | - Yuqi HE
- Zunyi Medical University, China
| |
Collapse
|
7
|
Xia QS, Gao Y, Wen-Bin W, Wu F, Dong H, Xu LJ, Fang K, Hu ML, Yuan F, Lu FE, Gong J. Ban-xia-xie-xin-tang ameliorates hepatic steatosis by regulating Cidea and Cidec expression in HFD-fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154351. [PMID: 35908522 DOI: 10.1016/j.phymed.2022.154351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ban-xia-xie-xin-tang (BXXXT) has been applied in treating metabolic diseases, such as nonalcohol fatty liver disease, diabetes mellitus, and obesity. However, the underlying molecular mechanism of BXXXT in treating diabetes mellitus is unknown. PURPOSE To clarify the underlying molecular mechanism of BXXXT in alleviating hepatic steatosis in high-fat diet (HFD)-fed mice. METHODS After 12 weeks of HFD treatment, mice were administered BXXXT for 4 weeks. The main chemical components of BXXXT were identified by UPLC-TQ-MS/MS. Indicators associated with insulin resistance and lipid metabolism were detected. The effect of improving glucose and lipid metabolism between BXXXT and the different components was compared. Differentially expressed genes (DEGs) were identified by hepatic transcriptomics. Key DEGs and proteins were further detected by real-time quantitative polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence staining. LDs and mitochondria were detected by transmission electron microscopy. RESULTS First of all, our data demonstrated that the capacity to improve glucose and lipid metabolism for BXXXT was significantly superior to different components of BXXXT. BXXXT was found to improve HFD-induced insulin resistance. Moreover, BXXXT decreased weight, serum/hepatic triglycerides, total cholesterol, and FFAs to alleviate HFD-induced hepatic steatosis. According to the results of the hepatic transcription, Cidea and Cidec were identified as critical DEGs for promoting LD fusion and reducing FFAs β-oxidation in mitochondria and peroxisome resulting in hepatic steatosis, which was reversed by BXXXT. CONCLUSION BXXXT ameliorates HFD-induced hepatic steatosis and insulin resistance by increasing Cidea and Cidec-mediated mitochondrial and peroxisomal fatty acid oxidation, which may provide a potential strategy for therapy of NAFLD and T2DM.
Collapse
Affiliation(s)
- Qing-Song Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Beijing Tcmages Pharmaceutical Co., Ltd, Beijing 100000, China
| | - Wu Wen-Bin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li-Jun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Mei-Lin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fen Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
8
|
Qu ZH, Liu L, Zhang XF, Guo DY, Zhai BT, Zou JB, Shi YJ. Exploring the Scientific Rationality of the Phenomenon of "Different Dosage Forms of the Same Prescription" of Chinese Proprietary Medicine Based on Biopharmaceutical Properties of Powder and Pill of Chuanxiong Chatiao Prescription. Front Pharmacol 2022; 13:893552. [PMID: 35754501 PMCID: PMC9218571 DOI: 10.3389/fphar.2022.893552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background: The 2020 edition of the Pharmacopoeia of the People’s Republic of China (Chinese Pharmacopoeia 2020 edition) has 255 Chinese prescriptions with different dosage forms, accounting for 21.09% of the total prescriptions (1,209) in Chinese Pharmacopoeia 2020 edition. However, the scientific rationality of the phenomenon of “Different Dosage Forms of the Same Prescription” of Chinese proprietary medicine has been less explored. Based on the dosage form theory of “components in pills release slowly and take effect in slow-acting manner, while in powders release quickly and take effect in fast-acting way,” we provided the in vitro dissolution experiment and in vivo pharmacokinetics of Chuanxiong Chatiao powders and pills in order to rationalize the phenomenon of “Different Dosage Forms of the Same Prescription” of Chuanxiong Chatiao prescription. Materials and Methods: Chuanxiong Chatiao powders and pills were prepared in the laboratory referring to the preparation methods in the Chinese Pharmacopoeia 2020 edition, and the contents of tetramethylpyrazine, ferulic acid, nodakenin, and isoimperatorin were determined by the external standard method. We measured the in vitro dissolution of four analytes of Chuanxiong Chatiao powders and pills according to the second method for dissolution determination (paddle method) in the Chinese Pharmacopoeia 2020 edition, and their corresponding contents in each sampling point were determined by LC-MS/MS. We also provided a pharmacokinetic study of Chuanxiong Chatiao powders and pills. Six female domestic rabbits were divided into two groups (powder and pill groups) and given Chuanxiong Chatiao powders and pills (9.85 g/kg) by surgical administration separately. Blood samples were collected at 5, 15, 30, 45, 60, 90, 120, 150, 180, 240, 360, 480, 720, and 1,440 min after drug administration to measure the plasma concentration of the four analytes by LC-MS/MS. Results: The results of in vitro dissolution experiment showed that the dissolution rate of four analytes in the powder group was greater than that of the pill group. However, the solubilities of tetramethylpyrazine and isoimperatorin were very low in the powder and pill, which may be related to their low solubility properties. The results of the in vivo pharmacokinetic study of Chuanxiong Chatiao powders and pills showed that Tmax (h) of ferulic acid and nodakenin in the powder group was 0.420 and 0.053 times that of the pill group and t1/2 (h) of ferulic acid, nodakenin, and isoimperatorin of the powder group was 0.910, 0.262, and 0.661 times that of the pill group, respectively. Conclusion: The in vitro dissolution rate and in vivo pharmacokinetic parameters of four analytes in CXCTF could partly explain the scientific rationality of the classic theory of “丸者缓也, 散者散也” as in Chinese, which is helpful for providing a basis for the comparison of subsequent dosage forms. The results of our studies also suggest the complexity of the design of dosage forms of Chinese proprietary medicines and imply that we should pay more attention to the scientific rationality of the phenomenon of “Different Dosage Forms of the Same Prescription.”
Collapse
Affiliation(s)
- Zhong-Huan Qu
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lin Liu
- Shangluo Hospital of Traditional Chinese Medicine, Shangluo, China
| | - Xiao-Fei Zhang
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dong-Yan Guo
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bing-Tao Zhai
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jun-Bo Zou
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ya-Jun Shi
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
9
|
Du Q, Meng X, Wang S. A Comprehensive Review on the Chemical Properties, Plant Sources, Pharmacological Activities, Pharmacokinetic and Toxicological Characteristics of Tetrahydropalmatine. Front Pharmacol 2022; 13:890078. [PMID: 35559252 PMCID: PMC9086320 DOI: 10.3389/fphar.2022.890078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Tetrahydropalmatine (THP), a tetrahydroproberine isoquinoline alkaloid, is widely present in some botanical drugs, such as Stephania epigaea H.S. Lo (Menispermaceae; Radix stephaniae epigaeae), Corydalis yanhusuo (Y.H.Chou & Chun C.Hsu) W.T. Wang ex Z.Y. Su and C.Y. Wu (Papaveraceae; Corydalis rhizoma), and Phellodendron chinense C.K.Schneid (Berberidaceae; Phellodendri chinensis cortex). THP has attracted considerable attention because of its diverse pharmacological activities. In this review, the chemical properties, plant sources, pharmacological activities, pharmacokinetic and toxicological characteristics of THP were systematically summarized for the first time. The results indicated that THP mainly existed in Papaveraceae and Menispermaceae families. Its pharmacological activities include anti-addiction, anti-inflammatory, analgesic, neuroprotective, and antitumor effects. Pharmacokinetic studies showed that THP was inadequately absorbed in the intestine and had rapid clearance and low bioavailability in vivo, as well as self-microemulsifying drug delivery systems, which could increase the absorption level and absorption rate of THP and improve its bioavailability. In addition, THP may have potential cardiac and neurological toxicity, but toxicity studies of THP are limited, especially its long-duration and acute toxicity tests. In summary, THP, as a natural alkaloid, has application prospects and potential development value, which is promising to be a novel drug for the treatment of pain, inflammation, and other related diseases. Further research on its potential target, molecular mechanism, toxicity, and oral utilization should need to be strengthened in the future.
Collapse
Affiliation(s)
- Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Shang H, Sun Y, Wang Z, Zhou Y, Yang H, Ci X, Cui T, Xia Y, Gu Y, Liao M, Li Q, Si D, Liu C. Intestinal absorption mechanism of rotundic acid: Involvement of P-gp and OATP2B1. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115006. [PMID: 35051604 DOI: 10.1016/j.jep.2022.115006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilicis Rotundae Cortex (IRC), the dried barks of Ilex rotunda Thunb. (Aquifoliaceae), has been used for the prevention or treatment of colds, tonsillitis, dysentery, and gastrointestinal diseases in folk medicine due to its antibacterial and anti-inflammatory effects. However, there is no report about the intestinal absorption of major compounds that support traditional usage. AIM OF STUDY Considering the potential of rotundic acid (RA) - major biologically active pentacyclic triterpenes found in the IRC, this study was purposed to uncover the oral absorption mechanism of RA using in situ single-pass intestinal perfusion (SPIP) model, in vitro cell models (Caco-2, MDCKII-WT, MDCKII-MDR1, MDCKII-BCRP, and HEK293-OATP2B1 cells) and in vivo pharmacokinetics studies in rats. MATERIALS AND METHODS The molecular properties (solubility, lipophilicity, and chemical stability) and the effects of principal parameters (time, compound concentrations, pH, paracellular pathway, and the different intestinal segments) were analyzed by liquid chromatography-tandem mass spectrometry. The susceptibility of RA to various inhibitors, such as P-gp inhibitor verapamil, BCRP inhibitor Ko143, OATP 2B1 inhibitor rifampicin, and absorption enhancer EGTA were assessed. RESULTS RA was a compound with low water solubility (12.89 μg/mL) and strong lipophilicity (LogP = 4.1). RA was considered stable in all media during the SPIP and transport studies. The SPIP and cell experiments showed RA was moderate absorbed in the intestines and exhibited time, concentration, pH, and segment-dependent permeability. In addition, results from the cell model, in situ SPIP model as well as the in vivo pharmacokinetics studies consistently showed that verapamil, rifampicin, and EGTA might have significant effect on the intestinal absorption of RA. CONCLUSION The mechanisms of intestinal absorption of RA might involve multiple transport pathways, including passive diffusion, the participation of efflux (i.e., P-gp) and influx (i.e., OATP2B1) transporters, and paracellular pathways.
Collapse
Affiliation(s)
- Haihua Shang
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Yinghui Sun
- Research Center of Bio-Technology, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China
| | - Ze Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ying Zhou
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China
| | - Huajiao Yang
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China
| | - Xiaoyan Ci
- Research Center of Bio-Technology, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China
| | - Tao Cui
- Research Center of Bio-Technology, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China
| | - Yuanyuan Xia
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China; Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuan Gu
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China; Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Maoliang Liao
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China; Tianjin Ringpu Bio-technology Co., Ltd., Tianjin, 300308, China.
| | - Quansheng Li
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China
| | - Duanyun Si
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China; Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China; Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China; Tianjin Institute of Pharmaceutical Research, Tianjin, 300000, China; Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
11
|
Wang Z, Zhang Z, Li Y, Sun L, Peng D, Du D, Zhang X, Han L, Zhao L, Lu L, Du H, Yuan S, Zhan M. Preclinical efficacy against acute myeloid leukaemia of SH1573, a novel mutant IDH2 inhibitor approved for clinical trials in China. Acta Pharm Sin B 2021; 11:1526-1540. [PMID: 34221866 PMCID: PMC8245910 DOI: 10.1016/j.apsb.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/04/2023] Open
Abstract
Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults, with increasing incidence with age and a generally poor prognosis. Almost 20% of AML patients express mutant isocitrate dehydrogenase 2 (mIDH2), which leads to the accumulation of the carcinogenic metabolite 2-hydroxyglutarate (2-HG), resulting in poor prognosis. Thus, global institutions have been working to develop mIDH2 inhibitors. SH1573 is a novel mIDH2 inhibitor that we independently designed and synthesised. We have conducted a comprehensive study on its pharmacodynamics, pharmacokinetics and safety. First, SH1573 exhibited a strong selective inhibition of mIDH2 R140Q protein, which could effectively reduce the production of 2-HG in cell lines, serum and tumors of an animal model. It could also promote the differentiation of mutant AML cell lines and granulocytes in PDX models. Then, it was confirmed that SH1573 possessed characteristics of high bioavailability, good metabolic stability and wide tissue distribution. Finally, toxicological data showed that SH1573 had no effects on the respiratory system, cardiovascular system and nervous system, and was genetically safe. This research successfully promoted the approval of SH1573 for clinical trials (CTR20200247). All experiments demonstrated that, as a potential drug against mIDH2 R140Q acute myeloid leukaemia, SH1573 was effective and safe.
Collapse
Key Words
- 2-HG, 2-hydroxyglutaric acid
- 2-Hydroxyglutarate
- ADME, absorption, distribution, metabolism and excretion
- AG-221, enasidenib
- AML, acute myeloid leukemia
- AUC, area under the cure
- Acute myeloid leukaemia
- BCRP, breast cancer resistance protein
- CDX, cell-line-derived xenograft
- CYP, cytochrome P450
- Differentiation
- EPO, erythropoietin
- IC50, half maximal inhibitory concentration
- LC–MS/MS, liquid chromatography–tandem mass spectrometry
- MDR1, multidrug resistance protein 1
- Mutant isocitrate dehydrogenase 2 (mIDH2)
- OAT, organic anion transporter
- OATP, organic anion transporting polypeptide
- OCT, organ cation transporter
- PD, pharamacodynamics
- PDX, patient-derived tumor xenograft
- PK, pharmacokinetics
- Papp, apparent permeability coefficient
- Preclinical efficacy
- SH1573
- Tumor metabolism
- mIDH2 inhibitor
- mIDH2, mutant isocitrate dehydrogenase
- α-KG, α-ketoglutaric acid
Collapse
Affiliation(s)
- Zhiqiang Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Zhibo Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Dezhen Peng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Danyu Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Xian Zhang
- Sanhome Pharmaceutical Co., Ltd., Nanjing 210000, China
| | - Luwei Han
- Sanhome Pharmaceutical Co., Ltd., Nanjing 210000, China
| | - Liwen Zhao
- Sanhome Pharmaceutical Co., Ltd., Nanjing 210000, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Corresponding authors.
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
- Corresponding authors.
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- Corresponding authors.
| |
Collapse
|
12
|
Xu H, Zhang Y, Wang P, Zhang J, Chen H, Zhang L, Du X, Zhao C, Wu D, Liu F, Yang H, Liu C. A comprehensive review of integrative pharmacology-based investigation: A paradigm shift in traditional Chinese medicine. Acta Pharm Sin B 2021; 11:1379-1399. [PMID: 34221858 PMCID: PMC8245857 DOI: 10.1016/j.apsb.2021.03.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, traditional Chinese medicine (TCM) has widely embraced systems biology and its various data integration approaches to promote its modernization. Thus, integrative pharmacology-based traditional Chinese medicine (TCMIP) was proposed as a paradigm shift in TCM. This review focuses on the presentation of this novel concept and the main research contents, methodologies and applications of TCMIP. First, TCMIP is an interdisciplinary science that can establish qualitative and quantitative pharmacokinetics-pharmacodynamics (PK-PD) correlations through the integration of knowledge from multiple disciplines and techniques and from different PK-PD processes in vivo. Then, the main research contents of TCMIP are introduced as follows: chemical and ADME/PK profiles of TCM formulas; confirming the three forms of active substances and the three action modes; establishing the qualitative PK-PD correlation; and building the quantitative PK-PD correlations, etc. After that, we summarize the existing data resources, computational models and experimental methods of TCMIP and highlight the urgent establishment of mathematical modeling and experimental methods. Finally, we further discuss the applications of TCMIP for the improvement of TCM quality control, clarification of the molecular mechanisms underlying the actions of TCMs and discovery of potential new drugs, especially TCM-related combination drug discovery.
Collapse
|