1
|
Li Q, Huang YH, Li QQ, Jia JN, Liu ZQ, Zhou HH, Zhou XY, Jin WL, Mao XY. Sodium valproate ablates ferroptosis in kainic acid-induced epileptic seizure via suppressing lysyl oxidase. Neuroreport 2024:00001756-990000000-00292. [PMID: 39423328 DOI: 10.1097/wnr.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The objective of this study is to explore whether sodium valproate (VPA) alleviates epileptic seizures via suppressing lysyl oxidase (Lox)-mediated ferroptosis. Epileptic seizure mouse model was prepared via intrahippocampal injection of kainic acid (250 ng/μl). After treatment with kainic acid, VPA was injected intraperitoneally by the dose of 250 mg/kg twice daily for 4 days. Ferroptosis-associated indices including lipid peroxides (LPO) level and Ptgs2 mRNA in hippocampal tissue samples were detected. Additionally, effects of VPA on Lox mRNA and enzymatic activity were assessed by quantitative real-time PCR and a commercial kit, respectively. Neuronal survival was assessed by Nissl staining. In kainic acid-induced epileptic seizure mouse model, VPA significantly suppressed LPO level and Ptgs2 mRNA and the suppression of ferroptosis was positively correlated with its anti-seizure effect. Lox mRNA and enzymatic activity were also found to decrease in hippocampus of epileptic seizure mice after VPA treatment. Furthermore, overexpression of Lox via adeno-associated virus infection remarkably abrogated the inhibitory effect of VPA on ferroptosis and neuronal impairment together with its anti-seizure effect. VPA suppresses Lox-mediated ferroptosis process, which can provide the explanation for its anti-seizure property.
Collapse
Affiliation(s)
- Qin Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
- Department of Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang
| | - Yu-Han Huang
- Department of Intensive Care Medicine, Xiangya Hospital Central South University, Changsha
| | - Qiu-Qi Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| | - Ji-Ning Jia
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| | - Xin-Yu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Department of Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| |
Collapse
|
2
|
Jiang D, Zhao J, Zheng J, Zhao Y, Le M, Qin D, Huang Q, Huang J, Zhao Q, Wang L, Dong X. LOX-mediated ECM mechanical stress induces Piezo1 activation in hypoxic-ischemic brain damage and identification of novel inhibitor of LOX. Redox Biol 2024; 76:103346. [PMID: 39260063 PMCID: PMC11414707 DOI: 10.1016/j.redox.2024.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) poses a significant challenge in neonatal medicine, often resulting in profound and lasting neurological deficits. Current therapeutic strategies for hypoxia-ischemia brain damage (HIBD) remain limited. Ferroptosis has been reported to play a crucial role in HIE and serves as a potential therapeutic target. However, the mechanisms underlying ferroptosis in HIBD remain largely unclear. In this study, we found that elevated lysyl oxidase (LOX) expression correlates closely with the severity of HIE, suggesting LOX as a potential biomarker for HIE. LOX expression levels and enzymatic activity were significantly increased in HI-induced neuronal models both in vitro and in vivo. Notably, we discovered that HI-induced brain tissue injury results in increased stiffness and observed a selective upregulation of the mechanosensitive ion channel Piezo1 in both brain tissue of HIBD and primary cortex neurons. Mechanistically, LOX increases its catalytic substrates, the Collagen I/III components, promoting extracellular matrix (ECM) remodeling and possibly mediating ECM cross-linking, which leads to increased stiffness at the site of injury and subsequent activation of the Piezo1 channel. Piezo1 senses these stiffness stimuli and then induces neuronal ferroptosis in a GPX4-dependent manner. Pharmacological inhibition of LOX or Piezo1 ameliorated brain neuronal ferroptosis and improved learning and memory impairments. Furthermore, we identified traumatic acid (TA) as a novel LOX inhibitor that effectively suppresses LOX enzymatic activity, mitigating neuronal ferroptosis and promoting synaptic plasticity. In conclusion, our findings elucidate a critical role for LOX-mediated ECM mechanical stress-induced Piezo1 activation in regulating ferroptotic cell death in HIBD. This mechanistic insight provides a basis for developing targeted therapies aimed at ameliorating neurological outcomes in neonates affected by HIBD.
Collapse
Affiliation(s)
- Dongya Jiang
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| | - Meini Le
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dani Qin
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Qiong Huang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyu Huang
- Department of Cardiology, Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University
| | - Qingshun Zhao
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Long Wang
- Department of Cardiology, Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University.
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Guan Q, Wang Z, Zhang K, Liu Z, Zhou H, Cao D, Mao X. CRISPR/Cas9-mediated neuronal deletion of 5-lipoxygenase alleviates deficits in mouse models of epilepsy. J Adv Res 2024; 63:73-90. [PMID: 39048074 PMCID: PMC11379977 DOI: 10.1016/j.jare.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Our previous work reveals a critical role of activation of neuronal Alox5 in exacerbating brain injury post seizures. However, whether neuronal Alox5 impacts the pathological process of epilepsy remains unknown. OBJECTIVES To prove the feasibility of neuron-specific deletion of Alox5 via CRISPR-Cas9 in the blockade of seizure onset and epileptic progression. METHODS Here, we employed a Clustered regularly interspaced short-palindromic repeat-associated proteins 9 system (CRISPR/Cas9) system delivered by adeno-associated virus (AAV) to specifically delete neuronal Alox5 gene in the hippocampus to explore its therapeutic potential in various epilepsy mouse models and possible mechanisms. RESULTS Neuronal depletion of Alox5 was successfully achieved in the brain. AAV delivery of single guide RNA of Alox5 in hippocampus resulted in reducing seizure severity, delaying epileptic progression and improving epilepsy-associated neuropsychiatric comorbidities especially anxiety, cognitive deficit and autistic-like behaviors in pilocarpine- and kainic acid-induced temporal lobe epilepsy (TLE) models. In addition, neuronal Alox5 deletion also reversed neuron loss, neurodegeneration, astrogliosis and mossy fiber sprouting in TLE model. Moreover, a battery of tests including analysis of routine blood test, hepatic function, renal function, routine urine test and inflammatory factors demonstrated no noticeable toxic effect, suggesting that Alox5 deletion possesses the satisfactory biosafety. Mechanistically, the anti-epileptic effect of Alox5 deletion might be associated with reduction of glutamate level to restore excitatory/inhibitory balance by reducing CAMKII-mediated phosphorylation of Syn ISer603. CONCLUSION Our findings showed the translational potential of AAV-mediated delivery of CRISPR-Cas9 system including neuronal Alox5 gene for an alternative promising therapeutic approach to treat epilepsy.
Collapse
Affiliation(s)
- Qiwen Guan
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China; Department of Clinical Pharmacy, Jiaozuo People's Hospital, Jiaozuo 454000, China
| | - Zhaojun Wang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Kai Zhang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Honghao Zhou
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Danfeng Cao
- Academician Workstation and Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|
4
|
Li X, Wu L, Sun L, Liu H, Qiao X, Mi N, Yan S, Zhang X, Wang K, Quan P, Yang F, Yao L. Ferroptosis-Related Gene Signatures in Epilepsy: Diagnostic and Immune Insights. Mol Neurobiol 2024:10.1007/s12035-024-04385-0. [PMID: 39052183 DOI: 10.1007/s12035-024-04385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Epilepsy is characterized by a multifaceted aetiology. Ferroptosis has recently been implicated in seizure pathophysiology, although its mechanistic role in epilepsy remains obscure. We examined the roles of ferroptosis-related genes (FRGs) in epilepsy cohorts from the GSE143272 dataset. We investigated the associations between gene expression and the immune response by performing CIBERSORT and MCP-counter analyses. By employing unsupervised consensus clustering and weighted gene coexpression network analysis (WGCNA), we delineated robust gene clusters across cohorts. Single-cell RNA sequencing data from the GSE201048 dataset provided insights into the interactions between pivotal ferroptosis-related genes and immune cells. Additionally, we employed qRT‒PCR technology to measure the levels of these central genes in the tissues of epileptic patients and mice. Our findings revealed seven pivotal genes (TFRC, POR, PTGS2, RELA, PGD, TRIM21, and QSOX1) at the forefront in epilepsy specimens. A diagnostic model harnessing these genes exhibited substantial efficacy (AUC = 0.913). Similarly, the qRT‒PCR analysis of samples from epileptic patients and mouse epileptic brain tissues substantiated these findings. Stratification of 91 patients with epilepsy via WGCNA, based on gene expression, revealed distinct immunological profiles. The scRNA-seq data further indicated increased expression of central genes in macrophages and microglia. Notably, these cells and those with elevated ferroptosis scores were significantly enriched in inflammation-related pathways. These findings support the strong involvement of FRGs in the pathogenesis of epilepsy, particularly neuroinflammation. These central genes hold promise as novel diagnostic biomarkers for epilepsy.
Collapse
Affiliation(s)
- Xueying Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Lei Wu
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Linlin Sun
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Xuezhu Qiao
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Na Mi
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Neurology, Chifeng Municipal Hospital, Chifeng, 024000, Inner Mongolia Autonomous Region, China
| | - Shi Yan
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Xinyu Zhang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Kun Wang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Pusheng Quan
- Department of Neurology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Fan Yang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Wan F, He X, Xie W. Canagliflozin Inhibits Palmitic Acid-Induced Vascular Cell Aging In Vitro through ROS/ERK and Ferroptosis Pathways. Antioxidants (Basel) 2024; 13:831. [PMID: 39061899 PMCID: PMC11273734 DOI: 10.3390/antiox13070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Vascular aging is one of the reasons for the high incidence of cardiovascular diseases nowadays, as vascular cells age due to various internal and external factors. Among them, high fat is an important inducer. Canagliflozin (CAN) is one of the SGLT2 inhibitors that has been shown to have cardiovascular protective effects in addition to lowering blood sugar, but the specific mechanism is not clear. This study first established a vascular aging model using palmitic acid (PA), then tested the effect of CAN on PA-induced vascular aging, and finally examined the mechanism of CAN's anti-vascular aging via ROS/ERK and ferroptosis pathways. We found that CAN alleviates PA-induced vascular cell aging by inhibiting the activation of ROS/ERK and ferroptosis signaling pathways. This study reveals new mechanisms of lipid-induced vascular aging and CAN inhibition of vascular aging from the perspectives of ROS/ERK and ferroptosis pathways, which is expected to provide new ideas for the development of related drugs in the future.
Collapse
Affiliation(s)
- Fang Wan
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (X.H.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Xin He
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (X.H.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (X.H.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
6
|
Gu X, Huang Z, Ying X, Liu X, Ruan K, Hua S, Zhang X, Jin H, Liu Q, Yang J. Ferroptosis exacerbates hyperlipidemic acute pancreatitis by enhancing lipid peroxidation and modulating the immune microenvironment. Cell Death Discov 2024; 10:242. [PMID: 38773098 PMCID: PMC11109150 DOI: 10.1038/s41420-024-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
Abnormal activation of ferroptosis worsens the severity of acute pancreatitis and intensifies the inflammatory response and organ damage, but the detailed underlying mechanisms are unknown. Compared with other types of pancreatitis, hyperlipidemic acute pancreatitis (HLAP) is more likely to progress to necrotizing pancreatitis, possibly due to peripancreatic lipolysis and the production of unsaturated fatty acids. Moreover, high levels of unsaturated fatty acids undergo lipid peroxidation and trigger ferroptosis to further exacerbate inflammation and worsen HLAP. This paper focuses on the malignant development of hyperlipidemic pancreatitis with severe disease combined with the core features of ferroptosis to explore and describe the mechanism of this phenomenon and shows that the activation of lipid peroxidation and the aberrant intracellular release of many inflammatory mediators during ferroptosis are the key processes that regulate the degree of disease development in patients with HLAP. Inhibiting the activation of ferroptosis effectively reduces the intensity of the inflammatory response, thus reducing organ damage in patients and preventing the risk of HLAP exacerbation. Additionally, this paper summarizes the key targets and potential therapeutic agents of ferroptosis associated with HLAP deterioration to provide new ideas for future clinical applications.
Collapse
Affiliation(s)
- Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhicheng Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzhiye Ying
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaiyi Ruan
- Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Hua
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China.
| |
Collapse
|
7
|
Chen KN, Peng QL, Cao DF, Wang ZJ, Zhang K, Zhou XY, Min DY, Zhou BT, Mao XY. Inhibition of lysyl oxidase by pharmacological intervention and genetic manipulation alleviates epilepsy-associated cognitive disorder. Brain Res Bull 2024; 210:110928. [PMID: 38493836 DOI: 10.1016/j.brainresbull.2024.110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Epilepsy-associated cognitive disorder (ECD), a prevalent comorbidity in epilepsy patients, has so far uncharacterized etiological origins. Our prior work revealed that lysyl oxidase (Lox) acted as a novel contributor of ferroptosis, a recently discovered cell death mode in the regulation of brain function. However, the role of Lox-mediated ferroptosis in ECD remains unknown. ECD mouse model was established 2 months later following a single injection of kainic acid (KA) for. After chronic treatment with KA, mice were treated with different doses (30 mg/kg, 100 mg/kg and 300 mg/kg) of Lox inhibitor BAPN. Additionally, hippocampal-specific Lox knockout mice was also constructed and employed to validate the role of Lox in ECD. Cognitive functions were assessed using novel object recognition test (NOR) and Morris water maze test (MWM). Protein expression of phosphorylated cAMP-response element binding (CREB), a well-known molecular marker for evaluation of cognitive performance, was also detected by Western blot. The protein distribution of Lox was analyzed by immunofluorescence. In KA-induced ECD mouse model, ferroptosis process was activated according to upregulation of 4-HNE protein and a previously discovered ferroptosis in our group, namely, Lox was remarkably increased. Pharmacological inhibition of Lox by BAPN at the dose of 100 mg/kg significantly increased the discrimination index following NOR test and decreased escape latency as well as augmented passing times within 60 s following MWM test in ECD mouse model. Additionally, deficiency of Lox in hippocampus also led to pronounced improvement of deficits in ECD model. These findings indicate that the ferroptosis regulatory factor, Lox, is activated in ECD. Ablation of Lox by either pharmacological intervention or genetic manipulation ameliorates the impairment in ECD mouse model, which suggest that Lox serves as a promising therapeutic target for treating ECD in clinic.
Collapse
Affiliation(s)
- Kang-Ni Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China; Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Qi-Lin Peng
- Department of Pharmacy, Xiangya Hospital Central South University, Changsha 410008, China
| | - Dan-Feng Cao
- Academician Workstation and Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Zhao-Jun Wang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Kai Zhang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Xin-Yu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang 222000, China; Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China.
| | - Dong-Yu Min
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China; Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China.
| | - Bo-Ting Zhou
- Department of Pharmacy, Xiangya Hospital Central South University, Changsha 410008, China.
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|
8
|
Su Y, Cao N, Zhang D, Wang M. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy. Ageing Res Rev 2024; 96:102248. [PMID: 38408490 DOI: 10.1016/j.arr.2024.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China
| | - Ningrui Cao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China; Department of Neurology, West China Hospital of Sichuan University, China.
| |
Collapse
|
9
|
Shi X, Liu R, Wang Y, Yu T, Zhang K, Zhang C, Gu Y, Zhang L, Wu J, Wang Q, Zhu F. Inhibiting acid-sensing ion channel exerts neuroprotective effects in experimental epilepsy via suppressing ferroptosis. CNS Neurosci Ther 2024; 30:e14596. [PMID: 38357854 PMCID: PMC10867794 DOI: 10.1111/cns.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Epilepsy is a chronic neurological disease characterized by repeated and unprovoked epileptic seizures. Developing disease-modifying therapies (DMTs) has become important in epilepsy studies. Notably, focusing on iron metabolism and ferroptosis might be a strategy of DMTs for epilepsy. Blocking the acid-sensing ion channel 1a (ASIC1a) has been reported to protect the brain from ischemic injury by reducing the toxicity of [Ca2+ ]i . However, whether inhibiting ASIC1a could exert neuroprotective effects and become a novel target for DMTs, such as rescuing the ferroptosis following epilepsy, remains unknown. METHODS In our study, we explored the changes in ferroptosis-related indices, including glutathione peroxidase (GPx) enzyme activity and levels of glutathione (GSH), iron accumulation, lipid degradation products-malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE) by collecting peripheral blood samples from adult patients with epilepsy. Meanwhile, we observed alterations in ASIC1a protein expression and mitochondrial microstructure in the epileptogenic foci of patients with drug-resistant epilepsy. Next, we accessed the expression and function changes of ASIC1a and measured the ferroptosis-related indices in the in vitro 0-Mg2+ model of epilepsy with primary cultured neurons. Subsequently, we examined whether blocking ASIC1a could play a neuroprotective role by inhibiting ferroptosis in epileptic neurons. RESULTS Our study first reported significant changes in ferroptosis-related indices, including reduced GPx enzyme activity, decreased levels of GSH, iron accumulation, elevated MDA and 4-HNE, and representative mitochondrial crinkling in adult patients with epilepsy, especially in epileptogenic foci. Furthermore, we found that inhibiting ASIC1a could produce an inhibitory effect similar to ferroptosis inhibitor Fer-1, alleviate oxidative stress response, and decrease [Ca2+ ]i overload by inhibiting the overexpressed ASIC1a in the in vitro epilepsy model induced by 0-Mg2+ . CONCLUSION Inhibiting ASIC1a has potent neuroprotective effects via alleviating [Ca2+ ]i overload and regulating ferroptosis on the models of epilepsy and may act as a promising intervention in DMTs.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ru Liu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Yingting Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Tingting Yu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Kai Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuyu Gu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Limin Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Qun Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Fei Zhu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
10
|
Liu H, Wen Z, Liu Z, Yang Y, Wang H, Xia X, Ye J, Liu Y. Unlocking the potential of amorphous calcium carbonate: A star ascending in the realm of biomedical application. Acta Pharm Sin B 2024; 14:602-622. [PMID: 38322345 PMCID: PMC10840486 DOI: 10.1016/j.apsb.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 02/08/2024] Open
Abstract
Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability. Calcium-based materials can also deliver contrast agents, which can enhance real-time imaging and exert a Ca2+-interfering therapeutic effect. Based on these characteristics, amorphous calcium carbonate (ACC), as a brunch of calcium-based biomaterials, has the potential to become a widely used biomaterial. Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However, the standalone presence of ACC is unstable in vivo. Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination. ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo, such as Ca2+ with an immune-regulating ability and CO2 with an imaging-enhancing ability. Owing to these characteristics, ACC has been studied for self-sacrificing templates of carrier construction, targeted delivery of oncology drugs, immunomodulation, tumor imaging, tissue engineering, and calcium supplementation. Emphasis in this paper has been placed on the origin, structural features, and multiple applications of ACC. Meanwhile, ACC faces many challenges in clinical translation, and long-term basic research is required to overcome these challenges. We hope that this study will contribute to future innovative research on ACC.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhiyang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zihan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Gong H, Li Z, Wu Z, Lian G, Su Z. Modulation of ferroptosis by non‑coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol Res Pract 2024; 253:155042. [PMID: 38184963 DOI: 10.1016/j.prp.2023.155042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Ferroptosis is a recently discovered cell programmed death. Extensive researches have indicated that ferroptosis plays an essential role in tumorigenesis, development, migration and chemotherapy drugs resistance, which makes it become a new target for tumor therapy. Non-coding RNAs (ncRNAs) are considered to control a wide range of cellular processes by modulating gene expression. Recent studies have indicated that ncRNAs regulate the process of ferroptosis via various pathway to affect the development of cancer. However, the regulation network remains ambiguous. In this review, we outlined the major metabolic processes of ferroptosis and concluded the relationship between ferroptosis-related ncRNAs and cancer progression. In addition, the prospect of ncRNAs being new therapeutic targets and early diagnosis biomarkers for cancer by regulating ferroptosis were presented, and the possible obstacles were also predicted. This could help in discovering novel cancer early diagnostic methods and therapeutic approaches.
Collapse
Affiliation(s)
- Huifang Gong
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhimin Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Zhong C, Yang J, Zhang Y, Fan X, Fan Y, Hua N, Li D, Jin S, Li Y, Chen P, Chen Y, Cai X, Zhang Y, Jiang L, Yang W, Yu P, Lin H. TRPM2 Mediates Hepatic Ischemia-Reperfusion Injury via Ca 2+-Induced Mitochondrial Lipid Peroxidation through Increasing ALOX12 Expression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0159. [PMID: 37275121 PMCID: PMC10232356 DOI: 10.34133/research.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023]
Abstract
Hepatic ischemia-reperfusion (IR) injury is a serious clinical problem that complicates liver resection and transplantation. Despite recent advances in understanding of the pathophysiology of hepatic IR injury, effective interventions and therapeutics are still lacking. Here, we examined the role of transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable, non-selective cation channel, in mediating hepatic IR injury. Our data showed that TRPM2 deficiency attenuated IR-induced liver dysfunction, inflammation, and cell death in mice. Moreover, RNA sequencing analysis indicated that TRPM2-induced IR injury occurs via ferroptosis-related pathways. Consistently, as a ferroptosis inducer, (1S,3R)-RSL3 treatment induced mitochondrial dysfunction in hepatocytes and a TRPM2 inhibitor suppressed this. Interestingly, TRPM2-mediated calcium influx caused mitochondrial calcium accumulation via the mitochondrial Ca2+-selective uniporter and increased the expression level of arachidonate 12-lipoxygenase (ALOX12), which results in mitochondrial lipid peroxidation during hepatic IR injury. Furthermore, hepatic IR injury-induced ferroptosis was obviously relieved by a TRPM2 inhibitor or calcium depletion, both in vitro and in vivo. Collectively, these findings demonstrate a crucial role for TRPM2-mediated ferroptosis in hepatic IR injury via increased Ca2+-induced ALOX12 expression, indicating that pharmacological inhibition of TRPM2 may provide an effective therapeutic strategy for hepatic IR injury-related diseases, such as during liver resection and transplantation.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yang Fan
- Department of Toxicology and Department of Medical Oncology of Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ning Hua
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province,
Xinxiang Medical University, 453003 Xinxiang, Henan, P.R. China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yongle Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Xiaobo Cai
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310000, P.R. China
| | - Yi Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310000, P.R. China
| | - Linhua Jiang
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province,
Xinxiang Medical University, 453003 Xinxiang, Henan, P.R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310000, P.R. China
| | - Peilin Yu
- Department of Toxicology and Department of Medical Oncology of Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital,
School of Medicine, Zhejiang University, Hangzhou 310020, P.R. China
- College of Biomedical Engineering and Instrument Science,
Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
13
|
Jin Y, Ren L, Jing X, Wang H. Targeting ferroptosis as novel therapeutic approaches for epilepsy. Front Pharmacol 2023; 14:1185071. [PMID: 37124220 PMCID: PMC10133701 DOI: 10.3389/fphar.2023.1185071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Epilepsy is a chronic disorder of the central nervous system characterized by recurrent unprovoked seizures resulting from excessive synchronous discharge of neurons in the brain. As one of the most common complications of many neurological diseases, epilepsy is an expensive and complex global public health issue that is often accompanied by neurobehavioral comorbidities, such as abnormalities in cognition, psychiatric status, and social-adaptive behaviors. Recurrent or prolonged seizures can result in neuronal damage and cell death; however, the molecular mechanisms underlying the epilepsy-induced damage to neurons remain unclear. Ferroptosis, a novel type of regulated cell death characterized by iron-dependent lipid peroxidation, is involved in the pathophysiological progression of epilepsy. Emerging studies have demonstrated pharmacologically inhibiting ferroptosis can mitigate neuronal damage in epilepsy. In this review, we briefly describe the core molecular mechanisms of ferroptosis and the roles they play in contributing to epilepsy, highlight emerging compounds that can inhibit ferroptosis to treat epilepsy and associated neurobehavioral comorbidities, and outline their pharmacological beneficial effects. The current review suggests inhibiting ferroptosis as a therapeutic target for epilepsy and associated neurobehavioral comorbidities.
Collapse
Affiliation(s)
- Yuzi Jin
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Lei Ren
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiaoqing Jing
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
14
|
Guan Q, Wang X, Cao D, Li M, Luo Z, Mao X. Calcium Phosphate-Based Nanoformulation Selectively Abolishes Phenytoin Resistance in Epileptic Neurons for Ceasing Seizures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300395. [PMID: 37029709 DOI: 10.1002/smll.202300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Phenytoin (PHT) is a first-line antiepileptic drug in clinics, which could decrease neuronal bioelectric activity by blocking the voltage-operated sodium channels. However, the intrinsically low blood-brain-barrier (BBB)-crossing capability of PHT and upregulated expression level of the efflux transporter p-glycoprotein (P-gp) coded by the gene Abcb1 in epileptic neurons limit its efficacy in vivo. Herein, a nanointegrated strategy to overcome PHT resistance mechanisms for enhanced antiepileptic efficacy is reported. Specifically, PHT is first incorporated into calcium phosphate (CaP) nanoparticles through biomineralization, followed by the surface modification of the PEGylated BBB-penetrating TAT peptide. The CaP@PHT-PEG-TAT nanoformulation could effectively cross the BBB to be taken in by epileptic neurons. Afterward, the acidic lysosomal environment would trigger their complete degradation to release Ca2+ and PHT into the cytosol. Ca2+ ions would inhibit mitochondrial oxidative phosphorylation to reverse cellular hypoxia to block hypoxia-inducible factor-1α (Hif1α)-Abcb1-axis, as well as disrupt adenosine triphosphate generation, leading to simultaneous suppression of the expression and drug efflux capacity of P-gp to enhance PHT retention. This study offers an approach for effective therapeutic intervention against drug-resistant epilepsy.
Collapse
Affiliation(s)
- Qiwen Guan
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Danfeng Cao
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| |
Collapse
|
15
|
Shan F, Shen S, Wang X, Chen G. BST2 regulated by the transcription factor STAT1 can promote metastasis, invasion and proliferation of oral squamous cell carcinoma via the AKT/ERK1/2 signaling pathway. Int J Oncol 2023; 62:54. [PMID: 36929425 PMCID: PMC10019759 DOI: 10.3892/ijo.2023.5502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/22/2023] [Indexed: 03/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the main types of head and neck squamous cell carcinoma. Although progress has been made in treating OSCC, it remains a threat to human health, and novel therapeutic strategies are needed to extend the lifespan of patients with OSCC. The present study, evaluated whether bone marrow stromal antigen 2 (BST2) and STAT1 were potential therapeutic targets in OSCC. Small interfering RNA (siRNA) or overexpression plasmids were used to regulate BST2 or STAT1 expression. Western blotting and reverse transcription‑quantitative PCR were performed to assess changes in the protein and mRNA expression levels of signaling pathway components. The effects of BST2 and STAT1 expression changes on the migration, invasion and proliferation of OSCC cells were assessed using the scratch test assay, Transwell assay and colony formation assay in vitro, respectively. Cell‑derived xenograft models were used to evaluate the impact of BST2 and STAT1 on the occurrence and development of OSCC in vivo. Finally, it was demonstrated that BST2 expression was significantly upregulated in OSCC. Furthermore, it was demonstrated that high expression of BST2 in OSCC contributed to the metastasis, invasion and proliferation of OSCC cells. Moreover, it was demonstrated that the promoter region of BST2 was regulated by the transcription factor STAT1, and that the STAT1/BST2 axis could affect the behavior of OSCC via the AKT/ERK1/2 signaling pathway. In vivo studies also demonstrated that STAT1 downregulation inhibited OSCC growth by down‑regulating BST2 expression via the AKT/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Fayu Shan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Si Shen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xinxing Wang
- Environmental Medicine Laboratory, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. China
- Correspondence to: Dr Xinxing Wang, Environmental Medicine Laboratory, Tianjin Institute of Environmental and Operational Medicine, 1 Dali Road, Heping, Tianjin 300050, P.R. China, E-mail:
| | - Gang Chen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China
- Dr Gang Chen, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, 12 Qi Xinang Tai Road, Heping, Tianjin 300070, P.R. China, E-mail:
| |
Collapse
|
16
|
Liu X, Li Y, Chen S, Yang J, Jing J, Li J, Wu X, Wang J, Wang J, Zhang G, Tang Z, Nie H. Dihydromyricetin attenuates intracerebral hemorrhage by reversing the effect of LCN2 via the system Xc- pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154756. [PMID: 37130481 DOI: 10.1016/j.phymed.2023.154756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The limited understanding of the pathological mechanisms of intracerebral hemorrhage (ICH) and the absence of successful therapies lead to poor prognoses for patients with ICH. Dihydromyricetin (DMY) has many physiological functions, such as regulating lipid and glucose metabolism and modulating tumorigenesis. Moreover, DMY has been proven to be an effective treatment of neuroprotection. However, no reports to date have been made regarding the impact of DMY on ICH. PURPOSE This investigation aimed to identify the role of DMY on ICH in mice and the underlying mechanisms. METHODS/RESULTS This study demonstrated that DMY treatment effectively reduced hematoma size and cell apoptosis of brain tissue, and improved neurobehavioral outcomes in mice with ICH. Transcriptional and network pharmacological analyses revealed that lipocalin-2 (LCN2) was a potential target of DMY in ICH. After ICH, LCN2 mRNA and protein expression in brain tissue increased and DMY could inhibit the expression of LCN2. The rescue experiment with the implementation of LCN2 overexpression verified these observations. Furthermore, after DMY treatment, there was a significant decrease in cyclooxygenase 2 (COX2), phospho-extracellular regulated protein kinase (P-ERK), iron deposition, and the number of abnormal mitochondria, which were reversed by the overexpression of LCN2. Proteomics analysis suggests that SLC3A2 may be the downstream target of LCN2, promoting ferroptosis. Finally, LCN2 was shown to bind to SLC3A2 and regulate the downstream glutathione (GSH) synthesis and Glutathione Peroxidase 4 (GPX4) expression and glutathione (GSH) synthesis, as determined by molecular docking and co-immunoprecipitation analysis. CONCLUSION Our study confirmed for the first time that DMY might offer a favorable treatment for ICH through its action on LCN2. The possible mechanism for this could be that DMY reverses the inhibitory effect of LCN2 on the system Xc-, lessening ferroptosis in brain tissue. The findings of this study offer a greater understanding of how DMY affects ICH at a molecular level and could be conducive to developing therapeutic targets for ICH.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Yunjie Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jingfei Yang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jie Jing
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China.
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China.
| |
Collapse
|
17
|
Liang P, Zhang X, Zhang Y, Wu Y, Song Y, Wang X, Chen T, Liu W, Peng B, Yin J, He F, Fan Y, Han S, He X. Neurotoxic A1 astrocytes promote neuronal ferroptosis via CXCL10/CXCR3 axis in epilepsy. Free Radic Biol Med 2023; 195:329-342. [PMID: 36610561 DOI: 10.1016/j.freeradbiomed.2023.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Epilepsy is a common neurological disorder with a complex etiology. Ferroptosis, a new form of programmed cell death, is characterized by the accumulation of lipid peroxides and associated with seizures. However, the underlying mechanism of ferroptosis in epilepsy remains elusive. Here, we found that GPX4-GSH-dependent neuronal ferroptosis was detected in epileptic mice, which was attenuated with ferroptosis inhibitors. Moreover, activated neurotoxic A1 astrocytes facilitated seizure-related neuronal ferroptosis in epileptic brains. Inhibition of ferroptosis blocked A1 astrocyte-induced neurotoxicity. A1 astrocyte-secreted CXCL10 enhanced STAT3 phosphorylation but suppressed SLC7A11 in neurons via CXCR3, leading to ferroptosis-associated lipid peroxidation in a GPX4-dependent manner. This was in line with clinical findings, showing a significant correlation between neuronal ferroptosis and A1 astrocytes in epileptic patients. In summary, the present data show that A1 astrocyte-induced neuronal ferroptosis contributes to the pathogenesis of epilepsy, which offers a novel therapeutic target for precision medicine.
Collapse
Affiliation(s)
- Peiyu Liang
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xinyi Zhang
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yahui Zhang
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yifan Wu
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yinghao Song
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xueyang Wang
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Taoxiang Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fanggang He
- Institute of Forensic Medicine, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuanteng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| | - Song Han
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Xiaohua He
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Yu H. Editorial of Special Column on A New Era of Nanobiomaterial-based Drug Delivery. Acta Pharm Sin B 2022; 12:3453-3455. [PMID: 36176902 PMCID: PMC9513486 DOI: 10.1016/j.apsb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
19
|
Yang N, Zhang K, Guan QW, Wang ZJ, Chen KN, Mao XY. D-Penicillamine Reveals the Amelioration of Seizure-Induced Neuronal Injury via Inhibiting Aqp11-Dependent Ferroptosis. Antioxidants (Basel) 2022; 11:1602. [PMID: 36009321 PMCID: PMC9405105 DOI: 10.3390/antiox11081602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Repetitive seizures, a common phenomenon in diverse neurologic conditions such as epilepsy, can undoubtedly cause neuronal injury and our prior work reveals that ferroptosis is a contributing factor of neuronal damage post seizure. However, there is no drug available in clinical practice for ameliorating seizure-induced neuronal impairment via targeting ferroptosis. Our present work aimed to explore whether D-penicillamine (DPA), an originally approved drug for treating Wilson's disease, inhibited neuronal ferroptosis and alleviated seizure-associated brain damage. Our findings revealed that DPA remarkably improved neuronal survival in kainic acid (KA)-treated mouse model. Furthermore, ferroptosis-associated indices including acyl-coA synthetase long chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (Ptgs2) gene and lipid peroxide (LPO) level were significantly decreased in KA mouse model after DPA treatment. In a ferroptotic cell death model induced by glutamate or erastin, DPA was also validated to evidently suppress neuronal ferroptosis. The results from RNA-seq analysis indicated that Aqp11, a gene coding previously reported channel protein responsible for transporting water and small solutes, was identified as a molecular target by which DPA exerted anti-ferroptotic potential in neurons. The experimental results from in vivo Aqp11 siRNA transfer into the brain also confirmed that knockdown of Aqp11 abrogated the inhibitory effect of seizure-induced ferroptosis after DPA treatment, suggesting that the effects of DPA on ferroptosis process are dependent upon Aqp11. In conclusion, DPA can be repurposed to cure seizure disorders such as epilepsy.
Collapse
Affiliation(s)
- Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Kai Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Zhao-Jun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
| | - Kang-Ni Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| |
Collapse
|