1
|
Chen O, Fu L, Wang Y, Li J, Liu J, Wen Y. Targeting HSP90AA1 to overcome multiple drug resistance in breast cancer using magnetic nanoparticles loaded with salicylic acid. Int J Biol Macromol 2025; 298:139443. [PMID: 39756742 DOI: 10.1016/j.ijbiomac.2024.139443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Multiple drug resistance (MDR) remains a major obstacle in effective breast cancer chemotherapy. This study explores the role of HSP90AA1 in driving MDR and evaluates the potential of magnetic nanoparticles (Fe3O4@SA) loaded with salicylic acid (SA) to counteract drug resistance. A comprehensive screening of 200 SA-related target genes identified nine core genes, including HSP90AA1. Pharmacophore analysis revealed that SA interacts with HSP90AA1, a key regulator of mitochondrial K+ channels. Fe3O4@SA nanoparticles demonstrated efficient cellular uptake and lysosomal escape, markedly improving the chemosensitivity of resistant breast cancer cells and promoting apoptosis. In vivo experiments further confirmed the anticancer efficacy of Fe3O4@SA, highlighting its potential as a promising therapeutic strategy to overcome MDR in breast cancer.
Collapse
Affiliation(s)
- Ou Chen
- Department of clinical laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Linlin Fu
- Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinggui Li
- Liaoning Jiahe Hospital of Traditional Chinese Medicine, Medical Imaging Center, Shenyang, China
| | - Jun Liu
- Department of cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yanqing Wen
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Wang W, Wang Y, Huang X, Wu P, Li L, Zhang Y, Chen Y, Chen Z, Li C, Zhou Y, Zhang J. Pathophysiology-Directed Engineering of a Combination Nanoanalgesic for Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405483. [PMID: 39716944 PMCID: PMC11848598 DOI: 10.1002/advs.202405483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Neuropathic pain, one of the most refractory pain diseases, remains a formidable medical challenge. There is still an unmet demand for effective and safe therapies to address this condition. Herein, a rat model of nerve injury-induced neuropathic pain is first established to explore its pathophysiological characteristics. Recognizing the role of neuroinflammation, an inflammation-resolving amphiphilic conjugate PPT is designed and synthesized by simultaneously conjugating polyethylene glycol, phenylboronic acid pinacol ester, and Tempol onto a cyclic scaffold. PPT can self-assemble into nanomicelles (termed PPTN). Following intravenous injection, PPTN preferentially accumulates in the injured nerve, ameliorates the neuroinflammatory milieu, and promotes nerve regeneration, thereby shortening neuropathic pain duration in rats. Moreover, the Ca2+ channel α2δ1 subunit is identified as a therapeutic target by RNA-sequencing analysis of the injured nerve. Based on this target, a mimicking peptide (AD peptide) is screened as an analgesic. By packaging AD peptide into PPTN, a combination nano-analgesic APTN is developed. Besides potentiated anti-hyperalgesic effects due to site-specific delivery and on-demand release of AD peptide at target sites, APTN simultaneously inhibits neuroinflammation and promotes nerve regeneration by reprogramming macrophages via regulating MAPK/NF-kB signaling pathways and NLRP3 inflammasome activation, thus affording synergistic efficacies in treating nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Wenkai Wang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsGeneral Hospital of PLA Xizang Military Area CommandLhasa850007P. R. China
| | - Yan Wang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- War Trauma Medical CenterState key Laboratory of TraumaBurns and Combined injuryArmy Medical CenterDaping HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Xinle Huang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsThe Second Naval Hospital of Southern Theater CommandSanya572000P. R. China
| | - Peng Wu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- School of PharmacyHanzhong Vocational and Technical CollegeHanzhong723002P. R. China
| | - Lanlan Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Yang Zhang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yihui Chen
- Department of General SurgeryXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Zhiyu Chen
- Department of OrthopedicsThe First Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Changqing Li
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yue Zhou
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- State Key Laboratory of Trauma and Chemical PoisoningThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Yu‐Yue Pathology Scientific Research Center313 Gaoteng Avenue, Jiulongpo DistrictChongqing400039P. R. China
| |
Collapse
|
3
|
Wang D, Pan Y, Chen W, He D, Qi W, Chen J, Yuan W, Yang Y, Chen D, Wang P, Jin H. Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412817. [PMID: 39840543 DOI: 10.1002/advs.202412817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/03/2025] [Indexed: 01/23/2025]
Abstract
Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis. In this study, a reactive oxygen species (ROS)-responsive nanoparticle is developed by linking deferasirox (DEF) and pterostilbene (PTE) with thioketal and incorporating cerium ions (Ce), creating Ce@D&P nanoparticles (NPs), which offer multitarget regulation of ferroptosis. The characteristics of Ce@D&P NPs are evaluated and their therapeutic effects on IL-1β-stimulated chondrocytes are verified. Results show that Ce@D&P NPs reduce ROS levels, mitigate inflammation, chelate iron to inhibit ferroptosis, and balance extracellular matrix (ECM) metabolism in chondrocytes. Mechanistically, transcriptomics and metabolomics analyses suggest that Ce@D&P NPs exerted their effects by regulating oxidative stress and lipid metabolism in chondrocytes. To better treat destabilization of the medial meniscus (DMM)-induced OA in mice, Ce@D&P NPs via intra-articular injection are delivered. The results show that Ce@D&P NPs alleviate cartilage matrix damage and slow OA progression. Overall, the findings indicate that Ce@D&P NPs represent a promising multitarget drug delivery system, and Ce@D&P NPs may be an effective strategy for OA treatment.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Yanli Pan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Wenzhe Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Du He
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Weihui Qi
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Yimin Yang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| |
Collapse
|
4
|
Peng Y, Luo X, Wang X, Hu E, Xie R, Lu F, Ding W, Dai F, Lan G, Lu B. Bioresponsive and transformable coacervate actuated by intestinal peristalsis for targeted treatment of intestinal bleeding and inflammation. Bioact Mater 2024; 41:627-639. [PMID: 39280897 PMCID: PMC11399697 DOI: 10.1016/j.bioactmat.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Developing an oral in situ-forming hydrogel that targets the inflamed intestine to suppress bleeding ulcers and alleviate intestinal inflammation is crucial for effectively treating ulcerative colitis (UC). Here, inspired by sandcastle worm adhesives, we proposed a water-immiscible coacervate (EMNs-gel) with a programmed coacervate-to-hydrogel transition at inflammatory sites composed of dopa-rich silk fibroin matrix containing embedded inflammation-responsive core-shell nanoparticles. Driven by intestinal peristalsis, the EMNs-gel can be actuated forward and immediately transform into a hydrogel once contacting with the inflamed intestine to yield strong tissue adhesion, resulting from matrix metalloproteinases (MMPs)-triggered release of Fe3+ from embedded nanoparticles and rearrangement of polymer network of EMNs-gel on inflamed intestine surfaces. Extensive in vitro experiments and in vivo UC models confirmed the preferential hydrogelation behavior of EMNs-gel to inflamed intestine surfaces, achieving highly effective hemostasis, and displaying an extended residence time ( > 48 h). This innovative EMNs-gel provides a non-invasive solution that accurately suppresses severe bleeding and improves intestinal homeostasis in UC, showcasing great potential for clinical applications.
Collapse
Affiliation(s)
- Yuqi Peng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Xiaofen Luo
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
- School of Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
5
|
Chi X, Chen T, Luo F, Zhao R, Li Y, Hu S, Li Y, Jiang W, Chen L, Wu D, Du Y, Hu J. Targeted no-releasing L-arginine-induced hesperetin self-assembled nanoparticles for ulcerative colitis intervention. Acta Biomater 2024:S1742-7061(24)00628-7. [PMID: 39461688 DOI: 10.1016/j.actbio.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Overproduction of reactive oxygen species (ROS) plays a crucial role in initiating and advancing ulcerative colitis (UC), and the persistent cycle between ROS and inflammation accelerates disease development. Therefore, developing strategies that can effectively scavenge ROS and provide targeted intervention are crucial for the management of UC. In this study, we synthesized natural carrier-free nanoparticles (HST-Arg NPs) using the Mannich reaction and π-π stacking for the intervention of UC. HST-Arg NPs are an oral formulation that exhibit good antioxidant capabilities and gastrointestinal stability. Benefiting from the negatively charged characteristics, HST-Arg NPs can specifically accumulate in positively charged inflamed regions of the colon. Furthermore, in the oxidative microenvironment of colonic inflammation, HST-Arg NPs respond to ROS by releasing nitric oxide (NO). In mice model of UC induced by dextran sulfate sodium (DSS), HST-Arg NPs significantly mitigated colonic injury by modulating oxidative stress, lowering pro-inflammatory cytokines, and repairing intestinal barrier integrity. In summary, this convenient and targeted oral nanoparticle can effectively scavenge ROS at the site of inflammation and achieve gas intervention, offering robust theoretical support for the development of subsequent oral formulations in related inflammatory interventions. STATEMENT OF SIGNIFICANCE: Nanotechnology has been extensively explored in the biomedical field, but the application of natural carrier-free nanotechnology in this area remains relatively rare. In this study, we developed a natural nanoparticle system based on hesperetin (HST), L-arginine (L-Arg), and vanillin (VA) to scavenge ROS and alleviate inflammation. In the context of ulcerative colitis (UC), the synthesized nanoparticles exhibited excellent intervention effects, effectively protecting the colon from damage. Consequently, these nanoparticles provide a promising and precise nutritional intervention strategy by addressing both oxidative stress and inflammatory pathways simultaneously, demonstrating significant potential for application.
Collapse
Affiliation(s)
- Xuesong Chi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shumeng Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wen Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - LiHang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Pan Q, Xie L, Zhu H, Zong Z, Wu D, Liu R, He B, Pu Y. Curcumin-incorporated EGCG-based nano-antioxidants alleviate colon and kidney inflammation via antioxidant and anti-inflammatory therapy. Regen Biomater 2024; 11:rbae122. [PMID: 39539979 PMCID: PMC11558062 DOI: 10.1093/rb/rbae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Natural remedies are gaining attention as promising approaches to alleviating inflammation, yet their full potential is often limited by challenges such as poor bioavailability and suboptimal therapeutic effects. To overcome these limitations, we have developed a novel nano-antioxidant (EK) based on epigallocatechin gallate (EGCG) aimed at enhancing the oral and systemic bioavailability, as well as the anti-inflammatory efficacy, of curcumin (Cur) in conditions such as acute colon and kidney inflammation. EK is synthesized using a straightforward Mannich reaction between EGCG and L-lysine (K), resulting in the formation of EGCG oligomers. These oligomers spontaneously self-assemble into nanoparticles with a spherical morphology and an average diameter of approximately 160 nm. In vitro studies reveal that EK nanoparticles exhibit remarkable radical-scavenging capabilities and effectively regulate redox processes within macrophages, a key component in the body's inflammatory response. By efficiently encapsulating curcumin within these EK nanoparticles, we create Cur@EK, a formulation that demonstrates a synergistic anti-inflammatory effect. Specifically, Cur@EK significantly reduces the levels of pro-inflammatory cytokines TNF-α and IL-6 while increasing the anti-inflammatory cytokine IL-10 in lipopolysaccharide-stimulated macrophages, highlighting its potent anti-inflammatory properties. When administered either orally or intravenously, Cur@EK shows superior bioavailability compared to free curcumin and exhibits pronounced anti-inflammatory effects in mouse models of ulcerative colitis and acute kidney injury. These findings suggest that the EK nano-antioxidant platform not only enhances the bioavailability of curcumin but also amplifies its therapeutic impact, offering a promising new avenue for the treatment and management of inflammation in both oral and systemic contexts.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Zhihui Zong
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Cheng W, Zhou X, Jin C, Wu J, Xia Y, Lu M, Yang Y, Jin X, Ji F, Wang B. Acid-base transformative HADLA micelles alleviate colitis by restoring adaptive immunity and gut microbiome. J Control Release 2023; 364:283-296. [PMID: 37898344 DOI: 10.1016/j.jconrel.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Inflammatory bowel disease (IBD) is a worldwide public health issue with an increasing number of patients annually. However, there is no curative drug for IBD, and the present medication for IBD generally focuses on suppressing hyperactive immune responses, which can only delay disease progression but inevitably induce off-target side effects, including infections and cancers. Herein, late-model orally administered nanotherapeutic micelles (HADLA) were developed based on a conjugate of hyaluronic acid (HA) and dehydrolithocholic acid (DLA), which was simple to achieve and obtained satisfactory therapeutic efficacy in a murine colitis model with a full safety profile. HADLA is capable of targeting inflammatory colon tissues, restoring intestinal barrier function and reducing intestinal epithelial cell death. Moreover, it modulates the adaptive immune system by inhibiting the activation of pathogenic T helper 17 (Th17) cells, and it exhibits more remarkable effects in preventing colitis than DLA alone. Finally, HADLA exhibits a remarkable ability to modulate dysregulated gut microbiomes by increasing beneficial probiotics and decreasing pathogenic bacteria, such as Turicibacter. Compared with the current systemic or subcutaneous administration of biologics, this study opens new avenues in the oral delivery of immune-modulating nanomedicine and introduces DLA as a new medication for IBD treatment.
Collapse
Affiliation(s)
- Weixin Cheng
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Xinxin Zhou
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, Zhejiang, China
| | - Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yi Xia
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Miaomiao Lu
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, Zhejiang, China
| | - Xi Jin
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China.
| | - Feng Ji
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China.
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Cancer Center, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
8
|
Zhang Y, Zhang H, Zhao F, Jiang Z, Cui Y, Ou M, Mei L, Wang Q. Mitochondrial-targeted and ROS-responsive nanocarrier via nose-to-brain pathway for ischemic stroke treatment. Acta Pharm Sin B 2023; 13:5107-5120. [PMID: 38045064 PMCID: PMC10692350 DOI: 10.1016/j.apsb.2023.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 12/05/2023] Open
Abstract
Oxidative stress injury and mitochondrial dysfunction are major obstacles to neurological functional recovery after ischemic stroke. The development of new approaches to simultaneously diminish oxidative stress and resist mitochondrial dysfunction is urgently needed. Inspired by the overproduced reactive oxygen species (ROS) at ischemic neuron mitochondria, multifunctional nanoparticles with ROS-responsiveness and mitochondrial-targeted (SPNPs) were engineered, achieving specific targeting delivery and controllable drug release at ischemic penumbra. Due to the nose-to-brain pathway, SPNPs which were encapsulated in a thermo-sensitive gel by intranasal administration were directly delivered to the ischemic penumbra bypassing the blood‒brain barrier (BBB) and enhancing delivery efficiency. The potential of SPNPs for ischemic stroke treatment was systematically evaluated in vitro and in rat models of middle cerebral artery occlusion (MCAO). Results demonstrated the mitochondrial-targeted and protective effects of SPNPs on H2O2-induced oxidative damage in SH-SY5Y cells. In vivo distribution analyzed by fluorescence imaging proved the rapid and enhanced active targeting of SPNPs to the ischemic area in MCAO rats. SPNPs by intranasal administration exhibited superior therapeutic efficacy by alleviating oxidative stress, diminishing inflammation, repairing mitochondrial function, and decreasing apoptosis. This strategy provided a multifunctional delivery system for the effective treatment of ischemic injury, which also implies a potential application prospect for other central nervous diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Haiyun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Faquan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhengping Jiang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yuanlu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meitong Ou
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qiangsong Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
9
|
Yan H, Li Y, Li S, Wu D, Xu Y, Hu J. Phosphatidylserine-functionalized liposomes-in-microgels for delivering genistein to effectively treat ulcerative colitis. J Mater Chem B 2023; 11:10404-10417. [PMID: 37877170 DOI: 10.1039/d3tb00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Ulcerative colitis (UC) is an inflammatory disease involving ulcers in the colon and rectum. The conventional treatments for UC still have many limitations, such as non-specific release, adverse effects and low absorption, resulting in the poor bioavailability of therapeutic agents. To address these challenges, targeting delivery systems are required to specifically deliver drugs to the colonic site with controlled release. Herein, we present a novel microgel oral delivery system, loaded with liposome nanoparticles (Li NPs) containing a natural anti-inflammatory compound genistein (Gen) into alginate microgels, thereby achieving the targeted release of Gen in the colonic region and ameliorating UC symptoms. Initially, Gen was loaded into phosphatidylserine (PS)-functionalized Li NPs to form Gen@Li NPs with an average size of 245.9 ± 9.6 nm. In vitro assessments confirmed that Gen@Li NPs efficiently targeted macrophages and facilitated the internalization of Gen into cells. To prevent rapid degradation in the harsh gastrointestinal tract, Gen@Li NPs were further encapsulated into alginate microgels through electric spraying technology, forming Gen@Li microgels. In vivo distribution tests demonstrated that Gen@Li microgels possessed long-term retention in the colon and gradual release characteristics compared to Gen@Li NPs. Furthermore, in vivo experiments confirmed that Gen@Li microgels significantly alleviated UC symptoms in mice induced by dextran sulfate sodium salt (DSS) mainly through reducing the expression levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and promoting colonic mucosal barrier repair through upregulation of mucosal protein expression. This study shed light on the potential of utilizing oral administration of natural compounds for UC treatment.
Collapse
Affiliation(s)
- Huijia Yan
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanfei Li
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Sihui Li
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Di Wu
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Yu Xu
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Jiangning Hu
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Wang X, Jiao M, Tian F, Lu X, Xiong H, Liu F, Wan Y, Zhang X, Wan H. A Biomimetic Nanoplatform with Improved Inflammatory Targeting Behavior for ROS Scavenging-Based Treatment of Ulcerative Colitis. Adv Healthc Mater 2023; 12:e2301450. [PMID: 37537878 DOI: 10.1002/adhm.202301450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Ulcerative colitis (UC), a refractory disease, has become a global problem. Herein, a biomimetic nanoplatform (AU-LIP-CM) comprising Au cluster enzymes (AU)-loaded liposomes (AU-LIP) camouflaged with the fusion membrane (CM) consisting of neutrophil (NC) and red blood cell (RBC) membrane is designed for the treatment of UC. Briefly, revealed by second near-infrared (NIR-II) imaging through collection of fluorescence emitting >1200 nm from AU, the improved inflammatory targeting behavior contributed by CM cloaking, which inherits abilities of inflammatory targeting and immune escape from NC and RBC, respectively, promotes specific accumulation of AU within inflammatory intestines with up to ≈11.5 times higher than that of bare AU. Afterward, AU possessing superoxide dismutase- and catalase-like activities realizes high-efficiency scavenging of reactive oxygen species (ROS), leading to repair of intestinal barriers, regulation of the immune system, and modulation of gut microbiota, which surpass first-line UC drug. In addition, study of underlying therapeutic mechanism demonstrated that the treatment with AU-LIP-CM can alter the gene signature associated with response to ROS for UC mice to a profile similar to that of healthy mice, deciphering related signal pathways. The strategy developed here provides insights of learning from properties of natural bio-substances to empower biomimetic nanoplatform to confront diseases.
Collapse
Affiliation(s)
- Xiaofen Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Menglu Jiao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xuan Lu
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Huihuang Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Fan Liu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330047, China
| | - Yiqun Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
11
|
Li J, Wang H. Selective organ targeting nanoparticles: from design to clinical translation. NANOSCALE HORIZONS 2023; 8:1155-1173. [PMID: 37427677 DOI: 10.1039/d3nh00145h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Targeting nanoparticle is a very promising therapeutic approach that can precisely target specific sites to treat diseases. Research on nanoscale drug delivery systems has made great progress in the past few years, making targeting nanoparticles a promising prospect. However, selective targeting nanoparticles designed for specific organs still face several challenges, one of which is the unknown fate of nanoparticles in vivo. This review starts with the in vivo journey of nanoparticles and describes the biological barriers and some targeting strategies for nanoparticles to target specific organs. Then, through the collection of literature in recent years, the design of selective targeting nanoparticles for various organs is illustrated, which provides a reference strategy for people to study the design of selective organ targeting nanoparticles. Ultimately, the prospect and challenge of selective organ targeting nanoparticles are discussed by collecting the data of clinical trials and marketed drugs.
Collapse
Affiliation(s)
- Jian Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Zeeshan M, Ain QU, Weigmann B, Story D, Smith BR, Ali H. Dual pH and microbial-sensitive galactosylated polymeric nanocargoes for multi-level targeting to combat ulcerative colitis. Asian J Pharm Sci 2023; 18:100831. [PMID: 37588990 PMCID: PMC10425895 DOI: 10.1016/j.ajps.2023.100831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 08/18/2023] Open
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease characterized by inflammation, ulcers and irritation of the mucosal lining. Oral drug delivery in UC encounters challenges because of multifaceted barriers. Dexamethasone-loaded galactosylated-PLGA/Eudragit S100/pullulan nanocargoes (Dexa-GP/ES/Pu NCs) have been developed with a dual stimuli-sensitive coating responsive to both colonic pH and microbiota, and an underneath galactosylated-PLGA core (GP). The galactose ligand of the GP preferentially binds to the macrophage galactose type-lectin-C (MGL-2) surface receptor. Therefore, both stimuli and ligand-mediated targeting facilitate nanocargoes to deliver Dexa specifically to the colon with enhanced macrophage uptake. Modified emulsion method coupled with a solvent evaporation coating technique was employed to prepare Dexa-GP/ES/Pu NCs. The nanocargoes were tested using in vitro, ex vivo techniques and dextran sodium sulfate (DSS) induced UC model. Prepared nanocargoes had desired physicochemical properties, drug release, cell uptake and cellular viability. Investigations using a DSS-colitis model showed high localization and mitigation of colitis with downregulation of NF-ĸB and COX-2, and restoration of clinical, histopathological, biochemical indices, antioxidant balance, microbial alterations, FTIR spectra, and epithelial junctions' integrity. Thus, Dexa-GP/ES/Pu NCs found to be biocompatible nanocargoes capable of delivering drugs to the inflamed colon with unique targeting properties for prolonged duration.
Collapse
Affiliation(s)
- Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen 91052, Germany
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Qurat Ul Ain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen 91052, Germany
| | - Darren Story
- Biomedical Engineering Department, Michigan State University, East Lansing 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48824, USA
| | - Bryan R. Smith
- Biomedical Engineering Department, Michigan State University, East Lansing 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48824, USA
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|