1
|
Zhang M, Zhang Y, Peng J, Huang Y, Gong Z, Lu H, Han L, Wang D. Gastrodin against oxidative stress-inflammation crosstalk via inhibiting mtDNA/TLR9 and JAK2/STAT3 signaling to ameliorate ischemic stroke injury. Int Immunopharmacol 2024; 141:113012. [PMID: 39182268 DOI: 10.1016/j.intimp.2024.113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The pathway of Janus-activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) (termed as JAK2/STAT3) plays an active role in stroke-related inflammation induced by ischemic stress. Gastrodin, the primary compound in Gastrodia elata Bl, has been identified for its notable neuroprotective effects and demonstrated to ameliorate cerebral ischemia-reperfusion but its exact mechanisms governing this defense are still unclear. This study aims to investigate whether gastrodin can regulate mitochondrial function via the JAK2/STAT3 pathway to limit cerebral ischemia-reperfusion. In vivo, gastrodin significantly reduced infarct volume, improved neurobiological function, attenuated neuronal apoptosis, oxidative stress, mitochondrial impairment, mtDNA leakage, and inflammatory responses. At the cellular level, gastrodin administration rescued OGD/R-induced cell apoptosis, oxidative stress, and mitochondrial dysfunction. Mechanistically, gastrodin notably suppressed Toll-like receptor 9 (TLR9) expression, important for the recognition of disrupted endogenous DNA to produce inflammatory reactions. Furthermore, gastrodin mitigated inflammation by inhibiting JAK2/STAT3 signaling, influencing inflammatory factors to aggravate inflammation. Notably, the effects of gastrodin were abolished by Coumermycin A1 (C-A1), a JAK2 agonist, validating the role of JAK2/STAT3 signaling. In summary, gastrodin enhances the protective effect against mitochondrial damage in ischemic stroke by inhibiting JAK2/STAT3 signaling. Gastrodin is a possible therapy for cerebral ischemia.
Collapse
Affiliation(s)
- Menglian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Yaowen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Yingying Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Huixin Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China.
| | - Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Institute for the Evaluation of the Efficacy and Safety of Chinese Medicines, Anhui Academy of Chinese Medicine, Hefei 230011, China.
| |
Collapse
|
2
|
Li N, Zhu A, Chen W, Li J, Pan L, Jiang Y, Wang X, Di L, Wang R. Nasal administration of Xingnaojing biomimetic nanoparticles for the treatment of ischemic stroke. Int J Pharm 2024; 666:124830. [PMID: 39401581 DOI: 10.1016/j.ijpharm.2024.124830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Xingnaojing injection (XNJ), is the first-line Chinese medicine injection approved for treating ischemic stroke (IS). XNJ can attenuate the inflammatory responses and oxidative stress, thus reversing neuronal damage of IS. This study aims to prepare the biomimetic nanoparticles (Bo-GEVs/XNJM) of nasal administration for IS treatment. The grapefruit extracellular vesicles (GEVs) loaded with microemulsions sourced from Xingnaojing injection (XNJM) are modified with borneol (Bo) to bypass the blood-brain barrier (BBB). Bo-GEVs/XNJM has the property of brain-targeting, and in vivo and in vitro experiments have validated that it has positive effects in reducing apoptosis, inhibiting oxidative stress, anti-inflammation, protecting mitochondrial function, and protecting the BBB. In summary, Bo-GEVs/XNJM has good neuroprotective effects, and provides an interventional method for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Nengjin Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anran Zhu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjing Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ruoning Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Wu F, Zhang Z, Ma S, He Y, He Y, Ma L, Lei N, Deng W, Wang F. Microenvironment-responsive nanosystems for ischemic stroke therapy. Theranostics 2024; 14:5571-5595. [PMID: 39310102 PMCID: PMC11413776 DOI: 10.7150/thno.99822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke, a common neurological disorder caused by impaired blood supply to the brain, presents a therapeutic challenge. Conventional treatments like thrombolysis and neuroprotection drugs lack ideal drug delivery systems, limiting their effectiveness. Selectively delivering therapies to the ischemic cerebral tissue holds great potential for preventing and/or treating ischemia-related pathological symptoms. The unique pathological microenvironment of the brain after ischemic stroke, characterized by hypoxia, acidity, and inflammation, offers new possibilities for targeted drug delivery. Pathological microenvironment-responsive nanosystems, extensively investigated in tumors with hypoxia-responsive systems as an example, could also respond to the ischemic cerebral microenvironment and achieve brain-targeted drug delivery and release. These emerging nanosystems are gaining traction for ischemic stroke treatment. In this review, we expound on the cerebral pathological microenvironment and clinical treatment strategies of ischemic stroke, highlight various stimulus-responsive materials employed in constructing ischemic stroke microenvironment-responsive nano delivery systems, and discuss the application of these microenvironment-responsive nanosystems in microenvironment regulation for ischemic stroke treatment.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhijian Zhang
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, 450052, Henan, China
| | - Yanyan He
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuxi He
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixia Ma
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ningjing Lei
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Deng
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fazhan Wang
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
4
|
Zou J, Lin R, Miao Y, Xie M, Wang X, Gao L, Huang X, Guo Y. Association between Life's simple 7 and post-stroke depression symptom from 2005-2016 NHANES survey: A cross-sectional study. J Psychiatr Res 2024; 177:346-351. [PMID: 39079467 DOI: 10.1016/j.jpsychires.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Depression symptoms are a common complication of stroke and heart disease and is a predictor of Post-stroke depression (PSD). However, the relationship between overall cardiovascular health indicators and PSD remains unclear. METHODS Data were collected from stroke patients in the 2005-2016 National Health and Nutrition Examination Surveys (NHANES) survey. Depression was defined as a Patient Health Questionnaire-9 (PHQ-9) score ≥10. In addition, PSD was defined as the coexistence of stroke and depression. Life's Simple 7 (LS7) provides an assessment of cardiovascular health and consists of 7 items. The LS7 scores range from 0 to 14 and can also be categorized into poor (0-7), average (8-10), and ideal (11-14). Logistic regression models were used to investigate the relationship between LS7 and PSD. RESULTS The average age of participants was 64.2 years, with 45.1% and 34.3 % being male and non-Hispanic whites, respectively. After adjusting for age, sex, race, education, and income, the LS7 scores were found to be associated with reduced PSD odds (OR: 0.76, 95% CI: 0.68-0.85, P: <0.001), as well as the number of ideal LS7 metrics (OR: 0.69, 95% CI: 0.56-0.85, P: <0.001). Furthermore, non-poor LS7 was also associated with a lower risk of PSD compared to poor LS7 (OR: 0.48, 95% CI: 0.25-0.91, P: 0.01). This association was stable in stratification analyses. CONCLUSION Cardiovascular health status assessed by LS7 was negatively associated with PSD. Future studies are required to verify these findings.
Collapse
Affiliation(s)
- Junjie Zou
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Renbao Lin
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuqing Miao
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Minghan Xie
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xi Wang
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lijie Gao
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Xiaowei Huang
- Dongguan University of Technology, Dongguan, 510282, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
5
|
Shim G, Youn YS. Precise subcellular targeting approaches for organelle-related disorders. Adv Drug Deliv Rev 2024; 212:115411. [PMID: 39032657 DOI: 10.1016/j.addr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.
Collapse
Affiliation(s)
- Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
6
|
Liu W, Liu L, Li H, Xie Y, Bai J, Guan J, Qi H, Sun J. Targeted pathophysiological treatment of ischemic stroke using nanoparticle-based drug delivery system. J Nanobiotechnology 2024; 22:499. [PMID: 39164747 PMCID: PMC11337765 DOI: 10.1186/s12951-024-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Ischemic stroke poses significant challenges in terms of mortality and disability rates globally. A key obstacle to the successful treatment of ischemic stroke lies in the limited efficacy of administering therapeutic agents. Leveraging the unique properties of nanoparticles for brain targeting and crossing the blood-brain barrier, researchers have engineered diverse nanoparticle-based drug delivery systems to improve the therapeutic outcomes of ischemic stroke. This review provides a concise overview of the pathophysiological mechanisms implicated in ischemic stroke, encompassing oxidative stress, glutamate excitotoxicity, neuroinflammation, and cell death, to elucidate potential targets for nanoparticle-based drug delivery systems. Furthermore, the review outlines the classification of nanoparticle-based drug delivery systems according to these distinct physiological processes. This categorization aids in identifying the attributes and commonalities of nanoparticles that target specific pathophysiological pathways in ischemic stroke, thereby facilitating the advancement of nanomedicine development. The review discusses the potential benefits and existing challenges associated with employing nanoparticles in the treatment of ischemic stroke, offering new perspectives on designing efficacious nanoparticles to enhance ischemic stroke treatment outcomes.
Collapse
Affiliation(s)
- Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hong Li
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, 266033, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ju Bai
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jialiang Guan
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Jinping Sun
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
7
|
Almahmoud A, Parekh HS, Paterson BM, Tupally KR, Vegh V. Intranasal delivery of imaging agents to the brain. Theranostics 2024; 14:5022-5101. [PMID: 39267777 PMCID: PMC11388076 DOI: 10.7150/thno.98473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The potential of intranasal administered imaging agents to altogether bypass the blood-brain barrier offers a promising non-invasive approach for delivery directly to the brain. This review provides a comprehensive analysis of the advancements and challenges of delivering neuroimaging agents to the brain by way of the intranasal route, focusing on the various imaging modalities and their applications in central nervous system diagnostics and therapeutics. The various imaging modalities provide distinct insights into the pharmacokinetics, biodistribution, and specific interactions of imaging agents within the brain, facilitated by the use of tailored tracers and contrast agents. Methods: A comprehensive literature search spanned PubMed, Scopus, Embase, and Web of Science, covering publications from 1989 to 2024 inclusive. Starting with advancements in tracer development, we going to explore the rationale for integration of imaging techniques, and the critical role novel formulations such as nanoparticles, nano- and micro-emulsions in enhancing imaging agent delivery and visualisation. Results: The review highlights the use of innovative formulations in improving intranasal administration of neuroimaging agents, showcasing their ability to navigate the complex anatomical and physiological barriers of the nose-to-brain pathway. Various imaging techniques, MRI, PET, SPECT, CT, FUS and OI, were evaluated for their effectiveness in tracking these agents. The findings indicate significant improvements in brain targeting efficiency, rapid uptake, and sustained brain presence using innovative formulations. Conclusion: Future directions involve the development of optimised tracers tailored for intranasal administration, the potential of multimodal imaging approaches, and the implications of these advancements for diagnosing and treating neurological disorders.
Collapse
Affiliation(s)
- Abdallah Almahmoud
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Department of Allied Medical Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Brett M Paterson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | | - Viktor Vegh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Wang C, Gu L, Zhang Y, Gao Y, Jian Z, Xiong X. Bibliometric insights into the inflammation and mitochondrial stress in ischemic stroke. Exp Neurol 2024; 378:114845. [PMID: 38838802 DOI: 10.1016/j.expneurol.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking. OBJECTIVE To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke. METHODS We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved. CONCLUSION Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Sun F, Ding Z, Shao F, Gao X, Tian H, Zhang X, Chen H, Wang C. Albumin-Based MUC13 Peptide Nanomedicine Suppresses Liver Cancer Stem Cells via JNK-ERK Signaling Pathway-Mediated Autophagy Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38968-38978. [PMID: 39024013 DOI: 10.1021/acsami.4c06034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Targeting liver cancer stem cells (LCSCs) is a promising strategy for hepatocellular carcinoma (HCC) therapy. Target selection and corresponding inhibitor screening are of vital importance for eliminating the stemness of LCSCs. Peptide-based agents are hopeful but have long been hindered for in vivo application. Herein, we selected a clinically significant target MUC13 and screened out a suitable peptide for preparation of an albumin-based MUC13 peptide nanomedicine, P3@HSA, which suppressed liver cancer stem cells via JNK-ERK signaling pathway-mediated autophagy inhibition. The selected target MUC13 was highly expressed in LCSCs and associated with the prognosis of liver cancer patients. Encouraged by this observation, we screened the corresponding peptide-based inhibitor P3 for further evaluation. P3 could interact with albumin through the intrinsic hydrophobic force and formed the nanomedicine P3@HSA. The prepared nanomedicine could inhibit LCSCs through JNK-ERK signaling pathway-mediated autophagy inhibition and exert potent antitumor effect both in vitro and in vivo. Together, this study provides a promising peptide-based nanomedicine for high-performance HCC treatment.
Collapse
Affiliation(s)
- Fen Sun
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zongyao Ding
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fengying Shao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaoyang Gao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Haina Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqing Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changlong Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
10
|
Hou Z, Brenner JS. Developing targeted antioxidant nanomedicines for ischemic penumbra: Novel strategies in treating brain ischemia-reperfusion injury. Redox Biol 2024; 73:103185. [PMID: 38759419 PMCID: PMC11127604 DOI: 10.1016/j.redox.2024.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
During cerebral ischemia-reperfusion conditions, the excessive reactive oxygen species in the ischemic penumbra region, resulting in neuronal oxidative stress, constitute the main pathological mechanism behind ischemia-reperfusion damage. Swiftly reinstating blood perfusion in the ischemic penumbra zone and suppressing neuronal oxidative injury are key to effective treatment. Presently, antioxidants in clinical use suffer from low bioavailability, a singular mechanism of action, and substantial side effects, severely restricting their therapeutic impact and widespread clinical usage. Recently, nanomedicines, owing to their controllable size and shape and surface modifiability, have demonstrated good application potential in biomedicine, potentially breaking through the bottleneck in developing neuroprotective drugs for ischemic strokes. This manuscript intends to clarify the mechanisms of cerebral ischemia-reperfusion injury and provides a comprehensive review of the design and synthesis of antioxidant nanomedicines, their action mechanisms and applications in reversing neuronal oxidative damage, thus presenting novel approaches for ischemic stroke prevention and treatment.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, 100700, China; The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin, 150010, Heilongjiang, China
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Zhou H, He J, Liu R, Cheng J, Yuan Y, Mao W, Zhou J, He H, Liu Q, Tan W, Shuai C, Deng Y. Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration. Bioact Mater 2024; 37:51-71. [PMID: 38515609 PMCID: PMC10954684 DOI: 10.1016/j.bioactmat.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) can be caused by aging, injury, and genetic factors. The pathological changes associated with IVDD include the excessive accumulation of reactive oxygen species (ROS), cellular pyroptosis, and extracellular matrix (ECM) degradation. There are currently no approved specific molecular therapies for IVDD. In this study, we developed a multifunctional and microenvironment-responsive metal-phenolic network release platform, termed TMP@Alg-PBA/PVA, which could treat (IL-1β)-induced IVDD. The metal-phenolic network (TA-Mn-PVP, TMP) released from this platform targeted mitochondria to efficiently scavenge ROS and reduce ECM degradation. Pyroptosis was suppressed through the inhibition of the IL-17/ERK signaling pathway. These findings demonstrate the versatility of the platform. And in a rat model of IVDD, TMP@Alg-PBA/PVA exhibited excellent therapeutic effects by reducing the progression of the disease. TMP@Alg-PBA/PVA, therefore, presents clinical potential for the treatment of IVDD.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Jinpeng He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Renfeng Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yuhao Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wanpu Mao
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Jun Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Honghui He
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Qianqi Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
12
|
Gao Q, Ni P, Wang Y, Huo P, Zhang X, Wang S, Xiao F, Li Y, Feng W, Yuan J, Zhang T, Li Q, Fan B, Kan Y, Li Z, Qi Y, Xing J, Yang Z, Cheng H, Gao X, Feng X, Xue M, Liu Y, Luo Y, Lu Z, Zhao Y. DDAH1 promotes neurogenesis and neural repair in cerebral ischemia. Acta Pharm Sin B 2024; 14:2097-2118. [PMID: 38799640 PMCID: PMC11119513 DOI: 10.1016/j.apsb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 05/29/2024] Open
Abstract
Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.
Collapse
Affiliation(s)
- Qiming Gao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pinfei Ni
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yilin Wang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Peiyun Huo
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fuyao Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yixuan Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Feng
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Zhang
- Department of Laboratory Animal, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qiang Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Boyu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhao Kan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhirui Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yimiao Qi
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Junfei Xing
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhenghong Yang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haixiao Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinran Gao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
13
|
Liu T, Wang Y, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. The Optimization Design of Macrophage Membrane Camouflaging Liposomes for Alleviating Ischemic Stroke Injury through Intranasal Delivery. Int J Mol Sci 2024; 25:2927. [PMID: 38474179 DOI: 10.3390/ijms25052927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Ischemic stroke is associated with a high mortality rate, and effective treatment strategies are currently lacking. In this study, we aimed to develop a novel nano delivery system to treat ischemic stroke via intranasal administration. A three-factor Box-Behnken experimental design was used to optimize the formulation of liposomes co-loaded with Panax notoginseng saponins (PNSs) and Ginsenoside Rg3 (Rg3) (Lip-Rg3/PNS). Macrophage membranes were coated onto the surface of the optimized liposomes to target the ischemic site of the brain. The double-loaded liposomes disguised by macrophage membranes (MM-Lip-Rg3/PNS) were spherical, in a "shell-core" structure, with encapsulation rates of 81.41% (PNS) and 93.81% (Rg3), and showed good stability. In vitro, MM-Lip-Rg3/PNS was taken up by brain endothelial cells via the clathrin-dependent endocytosis and micropinocytosis pathways. Network pharmacology experiments predicted that MM-Lip-Rg3/PNS could regulate multiple signaling pathways and treat ischemic stroke by reducing apoptosis and inflammatory responses. After 14 days of treatment with MM-Lip-Rg3/PNS, the survival rate, weight, and neurological score of middle cerebral artery occlusion (MCAO) rats significantly improved. The hematoxylin and eosin (H&E) and TUNEL staining results showed that MM-Lip-Rg3/PNS can reduce neuronal apoptosis and inflammatory cell infiltration and protect the ischemic brain. In vivo biological experiments have shown that free Rg3, PNS, and MM-Lip-Rg3/PNS can alleviate inflammation and apoptosis, especially MM-Lip-Rg3/PNS, indicating that biomimetic liposomes can improve the therapeutic effects of drugs. Overall, MM-Lip-Rg3/PNS is a potential biomimetic nano targeted formulation for ischemic stroke therapy.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
14
|
Xu J, Sun Y, You Y, Zhang Y, Huang D, Zhou S, Liu Y, Tong S, Ma F, Song Q, Dai C, Li S, Lei J, Wang Z, Gao X, Chen J. Bioorthogonal microglia-inspired mesenchymal stem cell bioengineering system creates livable niches for enhancing ischemic stroke recovery via the hormesis. Acta Pharm Sin B 2024; 14:1412-1427. [PMID: 38486994 PMCID: PMC10935060 DOI: 10.1016/j.apsb.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 03/17/2024] Open
Abstract
Mesenchymal stem cells (MSCs) experience substantial viability issues in the stroke infarct region, limiting their therapeutic efficacy and clinical translation. High levels of deadly reactive oxygen radicals (ROS) and proinflammatory cytokines (PC) in the infarct milieu kill transplanted MSCs, whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs' viability. Based on the intrinsic hormesis effects in cellular biology, we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy. This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer. In this system, extracellular ROS-scavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a micro-livable niche at the level of a single MSC for transplantation. Meanwhile, the infarct's inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing. The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days. This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.
Collapse
Affiliation(s)
- Jianpei Xu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yinzhe Sun
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yang You
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence & Department of Neurology, Fudan University, Shanghai 201203, China
| | - Dan Huang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201203, China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yipu Liu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shiqiang Tong
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Fenfen Ma
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengxiang Dai
- Daxing Research Institute, University of Science and Technology Beijing, Biomedical Industry Base, Zhongguancun Science and Technology Park, Beijing 102600, China
- Cellular Biomedicine Group Inc., Shanghai 201210, China
| | - Suke Li
- Daxing Research Institute, University of Science and Technology Beijing, Biomedical Industry Base, Zhongguancun Science and Technology Park, Beijing 102600, China
- Cellular Biomedicine Group Inc., Shanghai 201210, China
| | - Jigang Lei
- Daxing Research Institute, University of Science and Technology Beijing, Biomedical Industry Base, Zhongguancun Science and Technology Park, Beijing 102600, China
- Cellular Biomedicine Group Inc., Shanghai 201210, China
| | - Zhihua Wang
- Department of Emergency, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
15
|
Liao J, Li Y, Fan L, Sun Y, Gu Z, Xu QQ, Wang Y, Xiong L, Xiao K, Chen ZS, Ma Z, Zhang C, Wang T, Lu Y. Bioactive Ceria Nanoenzymes Target Mitochondria in Reperfusion Injury to Treat Ischemic Stroke. ACS NANO 2024. [PMID: 38266247 DOI: 10.1021/acsnano.3c10982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Overproduction of reactive oxygen species by damaged mitochondria after ischemia is a key factor in the subsequent cascade of damage. Delivery of therapeutic agents to the mitochondria of damaged neurons in the brain is a potentially promising targeted therapeutic strategy for the treatment of ischemic stroke. In this study, we developed a ceria nanoenzymes synergistic drug-carrying nanosystem targeting mitochondria to address multiple factors of ischemic stroke. Each component of this nanosystem works individually as well as synergistically, resulting in a comprehensive therapy. Alleviation of oxidative stress and modulation of the mitochondrial microenvironment into a favorable state for ischemic tolerance are combined to restore the ischemic microenvironment by bridging mitochondrial and multiple injuries. This work also revealed the detailed mechanisms by which the proposed nanodelivery system protects the brain, which represents a paradigm shift in ischemic stroke treatment.
Collapse
Affiliation(s)
- Jun Liao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yi Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Li Fan
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yuhan Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Zhengyan Gu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qing-Qiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Kai Xiao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhiwei Ma
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ying Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
16
|
Ding C, Shi Z, Ou M, Li Y, Huang L, Wang W, Huang Q, Li M, Chen C, Zeng X, Chen H, Mei L. Dextran-based micelles for combinational chemo-photodynamic therapy of tumors via in vivo chemiluminescence. Carbohydr Polym 2023; 319:121192. [PMID: 37567697 DOI: 10.1016/j.carbpol.2023.121192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/13/2023]
Abstract
Natural polysaccharides, represented by dextran, chitosan, and hyaluronic acid, are widely approved for use as pharmaceutical excipients and are important carrier materials for the design of advanced drug delivery systems, particularly in the field of anticancer drug delivery. The combination of stimuli-activable prodrug based chemotherapy and photodynamic therapy (PDT) has attracted increasing attention. Recent studies have verified the effectiveness of this strategy in the treatment of multiple aggressive cancers. However, in such combination, the stimuli-responsive chemotherapy and PDT have their own problems that need to be overcome. The uneven distribution of endogenous stimuli within tumor tissues makes it difficult for prodrug to be completely activated. And the inadequate tissue penetration depth of external light results in low efficiency of PDT. Aiming at these two bottlenecks, we designed a biocompatible dextran based - multi-component nanomedicine (PCL-NPs) that integrate a chemiluminescence agent luminol, a photosensitizer chlorine e6 (Ce6), and a reactive oxygen species (ROS)-activable thioketal-based paclitaxel (PTX) prodrug. The presence of overexpressed hydrogen peroxide (H2O2) inside tumor oxidizes the luminol moiety to generate in-situ light for PDT through chemiluminescence resonance energy transfer (CRET). The singlet oxygen (1O2) produced in this process not only directly kills tumor cells but also amplifies oxidative stress to accelerate the activation of PTX prodrug. We propose that the PCL-NPs have great therapeutic potential by simultaneously enhancing chemotherapy and PDT in a combination therapy.
Collapse
Affiliation(s)
- Chendi Ding
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China; Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meitong Ou
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yingbang Li
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China
| | - Li Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Meihang Li
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China; School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chunbo Chen
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|