Accelerated Bone Induction of Adult Rat Compact Bone Plate Scratched by Ultrasonic Scaler Using Acidic Electrolyzed Water.
MATERIALS 2021;
14:ma14123347. [PMID:
34204338 PMCID:
PMC8234999 DOI:
10.3390/ma14123347]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Fresh compact bone, the candidate graft material for bone regeneration, is usually grafted for horizontal bone augmentation. However, the dense calcified structure inhibits the release of growth factors and limits cellular and vascular perfusion. We aimed to create mechano-chemically altered dense skull bone by ultrasonic treatment, along with partial demineralization using commercially available acidic electrolyzed water (AEW). The parietal skull bone of an 11-month-old Wistar rat was exposed and continuously treated with a piezoelectric ultrasonic scaler tip for 1 min, using AEW (pH 2.3) or distilled water (DW, pH 5.6) as irrigants. Treated parietal bone was removed, cut into plates (5 × 5 × 1 mm3), grafted into the back subcutaneous tissues of syngeneic rats, and explanted at 1, 2, and 3 weeks. AEW bone showed an irregular surface, deep nano-microcracks, and decalcified areas. SEM-EDS revealed small amounts of residual calcium content in the AEW bone (0.03%) compared to the DW bone (0.86%). In the animal assay, the AEW bone induced bone at 2 weeks. Histomorphometric analysis showed that the area of new bone in the AEW bone at 2 and 3 weeks was significantly larger. This new combination technique of AEW-demineralization with ultrasonic treatment will improve the surface area and three-dimensional (3D) architecture of dense bone and accelerate new bone synthesis.
Collapse