1
|
Bahir MM, Rajendran A, Pattanayak D, Lenka N. Fabrication and characterization of ceramic-polymer composite 3D scaffolds and demonstration of osteoinductive propensity with gingival mesenchymal stem cells. RSC Adv 2023; 13:26967-26982. [PMID: 37692357 PMCID: PMC10485657 DOI: 10.1039/d3ra04360f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
The fabrication of biomaterial 3D scaffolds for bone tissue engineering applications involves the usage of metals, polymers, and ceramics as the base constituents. Notwithstanding, the composite materials facilitating enhanced osteogenic differentiation/regeneration are endorsed as the ideally suited bone grafts for addressing critical-sized bone defects. Here, we report the successful fabrication of 3D composite scaffolds mimicking the ECM of bone tissue by using ∼30 wt% of collagen type I (Col-I) and ∼70 wt% of different crystalline phases of calcium phosphate (CP) nanomaterials [hydroxyapatite (HAp), beta-tricalcium phosphate (βTCP), biphasic hydroxyapatite (βTCP-HAp or BCP)], where pH served as the sole variable for obtaining these CP phases. The different Ca/P ratio and CP nanomaterials orientation in these CP/Col-I composite scaffolds not only altered the microstructure, surface area, porosity with randomly oriented interconnected pores (80-450 μm) and mechanical strength similar to trabecular bone but also consecutively influenced the bioactivity, biocompatibility, and osteogenic differentiation potential of gingival-derived mesenchymal stem cells (gMSCs). In fact, BCP/Col-I, as determined from micro-CT analysis, achieved the highest surface area (∼42.6 m2 g-1) and porosity (∼85%), demonstrated improved bioactivity and biocompatibility and promoted maximum osteogenic differentiation of gMSCs among the three. Interestingly, the released Ca2+ ions, as low as 3 mM, from these scaffolds could also facilitate the osteogenic differentiation of gMSCs without even subjecting them to osteoinduction, thereby attesting these CP/Col-I 3D scaffolds as ideally suited bone graft materials.
Collapse
Affiliation(s)
- Manjushree M Bahir
- National Centre for Cell Science, Ganeshkhind Pune 411007 Maharashtra India +91-20-25708112
| | - Archana Rajendran
- National Centre for Cell Science, Ganeshkhind Pune 411007 Maharashtra India +91-20-25708112
| | - Deepak Pattanayak
- CSIR-Central Electrochemical Research Institute Karaikudi 630003 Tamilnadu India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind Pune 411007 Maharashtra India +91-20-25708112
| |
Collapse
|
2
|
Duan Q, Liu H, Zheng L, Cai D, Huang G, Liu Y, Guo R. Novel resorbable bone wax containing β-TCP and starch microspheres for accelerating bone hemostasis and promoting regeneration. Front Bioeng Biotechnol 2023; 11:1105306. [PMID: 36741749 PMCID: PMC9892855 DOI: 10.3389/fbioe.2023.1105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Traditional non-resorbable bone wax has been used in clinical surgery for more than 100 years. However, residual bone wax has been proven to cause numerous complications. In this study, a novel resorbable bone wax was designed to overcome the disadvantages of traditional non-resorbable bone wax. Alkylene oxide copolymers were used as the main component of resorbable bone wax; additionally, β-tricalcium phosphate and starch microspheres were added to enhance bone regeneration and hemostatic ability. This novel resorbable bone wax has a high potential for clinical translation and is expected to be developed as a substitute for traditional bone wax.
Collapse
Affiliation(s)
| | - Huiling Liu
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China
| | - Lixia Zheng
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China
| | - Daozhang Cai
- Department of Joint Surgery and Sports Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guangxin Huang
- Department of Joint Surgery and Sports Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Guangxin Huang, ; Yu Liu, ; Rui Guo,
| | - Yu Liu
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China,*Correspondence: Guangxin Huang, ; Yu Liu, ; Rui Guo,
| | - Rui Guo
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China,*Correspondence: Guangxin Huang, ; Yu Liu, ; Rui Guo,
| |
Collapse
|
3
|
Wu Y, Zhang S, Sun L, Lu Y, Jiang Y, Xiao G. Strontium doping stimulates the phase composition and evolution of β-tricalcium phosphate prepared by wet chemical method. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Production and Characterization of a 316L Stainless Steel/β-TCP Biocomposite Using the Functionally Graded Materials (FGMs) Technique for Dental and Orthopedic Applications. METALS 2021. [DOI: 10.3390/met11121923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metallic biomaterials are widely used for implants and dental and orthopedic applications due to their good mechanical properties. Among all these materials, 316L stainless steel has gained special attention, because of its good characteristics as an implantable biomaterial. However, the Young’s modulus of this metal is much higher than that of human bone (~193 GPa compared to 5–30 GPa). Thus, a stress shielding effect can occur, leading the implant to fail. In addition, due to this difference, the bond between implant and surrounding tissue is weak. Already, calcium phosphate ceramics, such as beta-tricalcium phosphate, have shown excellent osteoconductive and osteoinductive properties. However, they present low mechanical strength. For this reason, this study aimed to combine 316L stainless steel with the beta-tricalcium phosphate ceramic (β-TCP), with the objective of improving the steel’s biological performance and the ceramic’s mechanical strength. The 316L stainless steel/β-TCP biocomposites were produced using powder metallurgy and functionally graded materials (FGMs) techniques. Initially, β-TCP was obtained by solid-state reaction using powders of calcium carbonate and calcium phosphate. The forerunner materials were analyzed microstructurally. Pure 316L stainless steel and β-TCP were individually submitted to temperature tests (1000 and 1100 °C) to determine the best condition. Blended compositions used to obtain the FGMs were defined as 20% to 20%. They were homogenized in a high-energy ball mill, uniaxially pressed, sintered and analyzed microstructurally and mechanically. The results indicated that 1100 °C/2 h was the best sintering condition, for both 316L stainless steel and β-TCP. For all individual compositions and the FGM composite, the parameters used for pressing and sintering were appropriate to produce samples with good microstructural and mechanical properties. Wettability and hemocompatibility were also achieved efficiently, with no presence of contaminants. All results indicated that the production of 316L stainless steel/β-TCP FGMs through PM is viable for dental and orthopedic purposes.
Collapse
|
5
|
Alshemary AZ, Bilgin S, Işık G, Motameni A, Tezcaner A, Evis Z. Biomechanical Evaluation of an Injectable Alginate / Dicalcium Phosphate Cement Composites for Bone Tissue Engineering. J Mech Behav Biomed Mater 2021; 118:104439. [PMID: 33691231 DOI: 10.1016/j.jmbbm.2021.104439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/27/2023]
Abstract
Biocompatible dicalcium phosphate (DCP) cements are widely used as bone repair materials. In this study, we aimed to investigate the impact of different amounts of sodium alginate (SA) on the microstructural, mechanical, and biological properties of DCP cements. Beta-tricalcium phosphate (β-TCP) was prepared using a microwave-assisted wet precipitation system. Lattice parameters of the obtained particles determined from X-ray diffraction (XRD), were in good match with a standard phase of β-TCP. Scanning electron microscopy (SEM) examination revealed that the particles were in globular shape. Furthermore, all functional groups of β-TCP were also detected using Fourier-transform infrared spectroscopy (FTIR) spectra. DCP cement (pure phase) was synthesized using monocalcium phosphate monohydrate (MCPM)/β-TCP powder mixture blended with 1.0 mL of water. SA/DCP cement composites were synthesized by dissolving different amounts of SA into water (1.0 mL) to obtain different final concentrations (0.5%, 1%, 2% and 3%). The prepared cements were characterized with XRD, SEM, FTIR and Thermogravimetric analysis (TGA). XRD results showed that pure DCP and SA/DCP cements were in a good match with Monetite phase. SEM results confirmed that addition of SA inhibited the growth of DCP particles. Setting time and injectability behaviour were significantly improved upon increasing the SA amount into DCP cements. In vitro biodegradation was evaluated using Simulated body fluid (SBF) over 21 days at 37 °C. The highest cumulative weight loss (%) in SBF was observed for 2.0% SA/DCP (about 26.52%) after 21 days of incubation. Amount of Ca2+ ions released in SBF increased with the addition of SA. DCP and SA/DCP cements showed the highest mechanical strength after 3 days of incubation in SBF and declined with prolonged immersion periods. In vitro cell culture experiments were conducted using Dental pulp stem cells (DPSCs). Viability and morphology of cells incubated in extract media of DCP and SA/DCP discs after 24 h incubation was studied with MTT assay and fluorescence microscopy imaging, respectively. All cements were cytocompatible and viability of cells incubated in extracts of cements was higher than observed in the control group. Based on the outcomes, SA/DCP bone cements have a promising future to be utilized as bone filler.
Collapse
Affiliation(s)
- Ammar Z Alshemary
- Department of Biomedical Engineering, Faculty of Engineering, Karabuk University, Karabuk, 78050, Turkey.
| | - Saliha Bilgin
- Department of Biomedical Engineering, Faculty of Engineering, Karabuk University, Karabuk, 78050, Turkey
| | - Gülhan Işık
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Ali Motameni
- Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Aysen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
6
|
Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113:23-41. [PMID: 32565369 DOI: 10.1016/j.actbio.2020.06.022] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
β-tricalcium phosphate (β-TCP) is one the most used and potent synthetic bone graft substitute. It is not only osteoconductive, but also osteoinductive. These properties, combined with its cell-mediated resorption, allow full bone defects regeneration. Its clinical outcome is sometimes considered to be "unpredictable", possibly due to a poor understanding of β-TCP physico-chemical properties: β-TCP crystallographic structure is not fully uncovered; recent results suggest that sintered β-TCP is coated with a Ca-rich alkaline phase; β-TCP apatite-forming ability and osteoinductivity may be enhanced by a hydrothermal treatment; β-TCP grain size and porosity are strongly modified by the presence of minute amounts of β-calcium pyrophosphate or hydroxyapatite impurities. The aim of the present article is to provide a critical, but still rather comprehensive review of the current state of knowledge on β-TCP, with a strong focus on its synthesis and physico-chemical properties, and their link to the in vivo response. STATEMENT OF SIGNIFICANCE: The present review documents the richness, breadth, and interest of the research devoted to β-tricalcium phosphate (β-TCP). β-TCP is synthetic, osteoconductive, osteoinductive, and its resorption is cell-mediated, thus making it one of the most potent bone graft substitutes. This comprehensive review reveals that there are a number of aspects, such as surface chemistry, crystallography, or stoichiometry deviations, that are still poorly understood. As such, β-TCP is still an exciting scientific playground despite a 50 year long history and > 200 yearly publications.
Collapse
|
7
|
Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Topsakal A, Ekren N, Kilic O, Oktar FN, Mahirogullari M, Ozkan O, Sasmazel HT, Turk M, Bogdan IM, Stan GE, Gunduz O. Synthesis and characterization of antibacterial drug loaded β-tricalcium phosphate powders for bone engineering applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:16. [PMID: 31965360 DOI: 10.1007/s10856-019-6356-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Powders of β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2] and composite powders of β-TCP and polyvinyl alcohol (PVA) were synthesized by using wet precipitation methods. First, the conditions for the preparation of single phase β-TCP have been delineated. In the co-precipitation procedure, calcium nitrate and diammonium hydrogen phosphate were used as calcium and phosphorous precursors, respectively. The pH of the system was varied in the range 7-11 by adding designed amounts of ammonia solution. The filtered cakes were desiccated at 80 °C and subsequently calcined at different temperatures in the range between 700-1100 °C. Later on, rifampicin form II was used to produce drug-loaded β-TCP and PVA/β-TCP powders. All the synthesized materials have been characterized from morphological (by scanning electron microscopy) and structural-chemical (by X-ray diffraction and Fourier transform infrared spectroscopy) point of view. The drug loading capacity of the selected pure β-TCP powder has been assessed. The biological performance (cytocompatibility in fibroblast cell culture and antibacterial efficacy against Escherichia coli and Staphylococcus aureus) has been tested with promising results. Application perspectives of the designed drug-bioceramic-polymer blends are advanced and discussed.
Collapse
Affiliation(s)
- Aysenur Topsakal
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722, Istanbul, Turkey
| | - Nazmi Ekren
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722, Istanbul, Turkey
- Department of Electric and Electronic Engineering, Faculty of Technology, Marmara University, 34722, Istanbul, Turkey
| | - Osman Kilic
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722, Istanbul, Turkey
- Department of Electric and Electronic Engineering, Faculty of Engineering, Marmara University, 34722, Istanbul, Turkey
| | - Faik N Oktar
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722, Istanbul, Turkey
- Department of Bioengineering, Faculty of Engineering, Marmara University, 34722, Istanbul, Turkey
| | - Mahir Mahirogullari
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722, Istanbul, Turkey
- Department of Orthopedics and Traumatology, Memorial Hospital, 34390, Istanbul, Turkey
| | - Ozan Ozkan
- Bioengineering Division, Graduate School of Science and Engineering, Hacettepe University, Beyte, 06800, Ankara, Turkey
| | - Hilal Turkoglu Sasmazel
- Metallurgical and Materials Engineering Department, Faculty of Engineering, Atilim University, Incek, 06830, Ankara, Turkey
| | - Mustafa Turk
- Bioengineering Division, Engineering Faculty, Kirikkale University, Yahsihan, 71450, Kirikkale, Turkey
| | - Iuliana M Bogdan
- National Institute of Materials Physics, 077125, Magurele, Ilfov, Romania
| | - George E Stan
- National Institute of Materials Physics, 077125, Magurele, Ilfov, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722, Istanbul, Turkey.
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722, Istanbul, Turkey.
| |
Collapse
|
9
|
Everything old is new again: a reinspection of solid-state method for the fabrication of high quality calcium hydroxyapatite bioceramics. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|