1
|
Ruhaimi AH, Aziz MAA. Tailoring tea residue-derived nitrogen-doped activated carbon for CO 2 adsorption: influence of activation temperature and activating agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60426-60450. [PMID: 39379654 DOI: 10.1007/s11356-024-35154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Embracing CO2 mitigation strategies, such as state-of-the-art CO2 capture technologies, is essential for effectively reducing atmospheric carbon levels and advancing global efforts toward a more sustainable future. In this context, adsorption sequestering techniques utilising carbon materials have emerged as promising candidates for CO2 capture. These materials have been extensively researched with a range of tuning methods to optimise their physicochemical features. In this study, an alteration of the N-doped activated carbon was successfully performed, utilizing tea residue as the carbon precursor and ammonia as the nitrogen source, facilitated through an impregnation procedure. With the objective of discovering the effect of diverse activation parameters on prepared adsorbent physicochemical properties, several selections of activating agents (AA) were investigated: KOH, H3PO4, ZnCl2, and NaOH, together with broad thermal activation temperature from 873 to 1173 K. The best-performed adsorbents from the respective AC group were subjected to several characterisation analyses and found to the enhanced structural features, heteroatom doped-rich surface (i.e. N and O); together with AA-induced metal/mineral functionalization, the NaOH-used AC (NAC-N-1173) was the optimum-performed adsorbent with a promising 4.12 mmol/g CO2 uptake capacity, higher than other prepared adsorbent including N-doped tea residue-derived char and commercialized AC with 175 and 325% higher, respectively.
Collapse
Affiliation(s)
- Amirul Hafiiz Ruhaimi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 UTM, Johor, Malaysia
| | - Muhammad Arif Ab Aziz
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 UTM, Johor, Malaysia.
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 UTM, Johor, Malaysia.
| |
Collapse
|
3
|
Gianolio D, Higham MD, Quesne MG, Aramini M, Xu R, Large AI, Held G, Velasco-Vélez JJ, Haevecker M, Knop-Gericke A, Genovese C, Ampelli C, Schuster ME, Perathoner S, Centi G, Catlow CRA, Arrigo R. Interfacial Chemistry in the Electrocatalytic Hydrogenation of CO 2 over C-Supported Cu-Based Systems. ACS Catal 2023; 13:5876-5895. [PMID: 37180964 PMCID: PMC10167656 DOI: 10.1021/acscatal.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/31/2023] [Indexed: 05/16/2023]
Abstract
Operando soft and hard X-ray spectroscopic techniques were used in combination with plane-wave density functional theory (DFT) simulations to rationalize the enhanced activities of Zn-containing Cu nanostructured electrocatalysts in the electrocatalytic CO2 hydrogenation reaction. We show that at a potential for CO2 hydrogenation, Zn is alloyed with Cu in the bulk of the nanoparticles with no metallic Zn segregated; at the interface, low reducible Cu(I)-O species are consumed. Additional spectroscopic features are observed, which are identified as various surface Cu(I) ligated species; these respond to the potential, revealing characteristic interfacial dynamics. Similar behavior was observed for the Fe-Cu system in its active state, confirming the general validity of this mechanism; however, the performance of this system deteriorates after successive applied cathodic potentials, as the hydrogen evolution reaction then becomes the main reaction pathway. In contrast to an active system, Cu(I)-O is now consumed at cathodic potentials and not reversibly reformed when the voltage is allowed to equilibrate at the open-circuit voltage; rather, only the oxidation to Cu(II) is observed. We show that the Cu-Zn system represents the optimal active ensembles with stabilized Cu(I)-O; DFT simulations rationalize this observation by indicating that Cu-Zn-O neighboring atoms are able to activate CO2, whereas Cu-Cu sites provide the supply of H atoms for the hydrogenation reaction. Our results demonstrate an electronic effect exerted by the heterometal, which depends on its intimate distribution within the Cu phase and confirms the general validity of these mechanistic insights for future electrocatalyst design strategies.
Collapse
Affiliation(s)
- Diego Gianolio
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Michael D. Higham
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Matthew G. Quesne
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
| | - Matteo Aramini
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Ruoyu Xu
- Department
of Chemical Engineering, University College
London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Alex I. Large
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Georg Held
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Juan-Jesús Velasco-Vélez
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Michael Haevecker
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Axel Knop-Gericke
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Chiara Genovese
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - Claudio Ampelli
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | | | - Siglinda Perathoner
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - Gabriele Centi
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - C. Richard A. Catlow
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Rosa Arrigo
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- School
of Science, Engineering and Environment, University of Salford, Cockcroft Building, Salford, Greater Manchester M5 4WT, U.K.
| |
Collapse
|
4
|
Chizhov A, Kutukov P, Gulin A, Astafiev A, Rumyantseva M. Highly Active Nanocrystalline ZnO and Its Photo-Oxidative Properties towards Acetone Vapor. MICROMACHINES 2023; 14:mi14050912. [PMID: 37241536 DOI: 10.3390/mi14050912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Zinc oxide is one of the well-known photocatalysts, the potential applications of which are of great importance in photoactivated gas sensing, water and air purification, photocatalytic synthesis, among others. However, the photocatalytic performance of ZnO strongly depends on its morphology, composition of impurities, defect structure, and other parameters. In this paper, we present a route for the synthesis of highly active nanocrystalline ZnO using commercial ZnO micropowder and ammonium bicarbonate as starting precursors in aqueous solutions under mild conditions. As an intermediate product, hydrozincite is formed with a unique morphology of nanoplates with a thickness of about 14-15 nm, the thermal decomposition of which leads to the formation of uniform ZnO nanocrystals with an average size of 10-16 nm. The synthesized highly active ZnO powder has a mesoporous structure with a BET surface area of 79.5 ± 4.0 m2/g, an average pore size of 20 ± 2 nm, and a cumulative pore volume of 0.507 ± 0.051 cm3/g. The defect-related PL of the synthesized ZnO is represented by a broad band with a maximum at 575 nm. The crystal structure, Raman spectra, morphology, atomic charge state, and optical and photoluminescence properties of the synthesized compounds are also discussed. The photo-oxidation of acetone vapor over ZnO is studied by in situ mass spectrometry at room temperature and UV irradiation (λmax = 365 nm). The main products of the acetone photo-oxidation reaction, water and carbon dioxide, are detected by mass spectrometry, and the kinetics of their release under irradiation are studied. The effect of morphology and microstructure on the photo-oxidative activity of ZnO samples is demonstrated.
Collapse
Affiliation(s)
- Artem Chizhov
- Chemistry Department, Moscow State University, Moscow 119991, Russia
| | - Pavel Kutukov
- Chemistry Department, Moscow State University, Moscow 119991, Russia
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, Moscow 119991, Russia
| | - Artyom Astafiev
- N.N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, Moscow 119991, Russia
| | | |
Collapse
|
5
|
Khine EE, Kaptay G. Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air-A Thermodynamic Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:776. [PMID: 36676513 PMCID: PMC9861040 DOI: 10.3390/ma16020776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Several metal oxide nanoparticles (NPs) were already obtained by mixing NaOH solution with chloride solution of the corresponding metal to form metal hydroxide or oxide precipitates and wash-dry-calcine the latter. However, the complete list of metal oxide NPs is missing with which this technology works well. The aim of this study was to fill this knowledge gap and to provide a full list of possible metals for which this technology probably works well. Our methodology was chemical thermodynamics, analyzing solubilities of metal chlorides, metal oxides and metal hydroxides in water and also standard molar Gibbs energy changes accompanying the following: (i) the reaction between metal chlorides and NaOH; (ii) the dissociation reaction of metal hydroxides into metal oxide and water vapor and (iii) the reaction between metal oxides and gaseous carbon dioxide to form metal carbonates. The major result of this paper is that the following metal-oxide NPs can be produced by the above technology from the corresponding metal chlorides: Al2O3, BeO, CaO, CdO, CoO, CuO, FeO, Fe2O3, In2O3, La2O3, MgO, MnO, Nd2O3, NiO, Pr2O3, Sb2O3, Sm2O3, SnO, Y2O3 and ZnO. From the analysis of the literature, the following nine nano-oxides have been already obtained experimentally with this technology: CaO, CdO, Co3O4, CuO, Fe2O3, NiO, MgO, SnO2 and ZnO (note: Co3O4 and SnO2 were obtained under oxidizing conditions during calcination in air). Thus, it is predicted here that the following nano-oxides can be potentially synthesized with this technology in the future: Al2O3, BeO, In2O3, La2O3, MnO, Nd2O3, Pr2O3, Sb2O3, Sm2O3 and Y2O3. The secondary result is that among the above 20 nano-oxides, the following five nano-oxides are able to capture carbon dioxide from air at least down to 42 ppm residual CO2-content, i.e., decreasing the current level of 420 ppm of CO2 in the Earth's atmosphere at least tenfold: CaO, MnO, MgO, CdO, CoO. The tertiary result is that by mixing the AuCl3 solution with NaOH solution, Au nano-particles will precipitate without forming Au-oxide NPs. The results are significant for the synthesis of metal nano-oxide particles and for capturing carbon dioxide from air.
Collapse
Affiliation(s)
- Ei Ei Khine
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515 Miskolc, Hungary
| | - George Kaptay
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515 Miskolc, Hungary
- ELKH-ME Materials Science Research Group, University of Miskolc, 3515 Miskolc, Hungary
| |
Collapse
|
6
|
Wang H, Yang D, Yang J, Ma X, Li H, Dong W, Zhang R, Feng C. Efficient Electroreduction of CO
2
to CO on Porous ZnO Nanosheets with Hydroxyl Groups in Ionic Liquid‐based Electrolytes. ChemCatChem 2021. [DOI: 10.1002/cctc.202100329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hui Wang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Dexin Yang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Jie Yang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Xiaoxue Ma
- Institute of Rare and Scattered Elements Chemistry, College of Chemistry Liaoning University Shenyang Liaoning 110036 P. R. China
| | - Hongping Li
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Weiwei Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Renjie Zhang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Chongyang Feng
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 P. R. China
| |
Collapse
|