1
|
Sneha Ravi A, Dalvi S. Liquid Marbles and Drops on Superhydrophobic Surfaces: Interfacial Aspects and Dynamics of Formation: A Review. ACS OMEGA 2024; 9:12307-12330. [PMID: 38524492 PMCID: PMC10956110 DOI: 10.1021/acsomega.3c07657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Liquid marbles (LMs) are droplets encapsulated with powders presenting varied roughness and wettability. These LMs have garnered a lot of attention due to their dual properties of leakage-free and quick transport on both solid and liquid surfaces. These droplets are in a Cassie-Baxter wetting state sitting on both roughness and air pockets existing between particles. They are also reminiscent of the state of a drop on a superhydrophobic (SH) surface. In this review, LMs and bare droplets on SH surfaces are comparatively investigated in terms of two aspects: interfacial and dynamical. LMs present a fascinating class of soft matter due to their superior interfacial activity and their remarkable stability. Inherently hydrophobic powders form stable LMs by simple rolling; however, particles with defined morphologies and chemistries contribute to the varied stability of LMs. The factors contributing to this interesting robustness with respect to bare droplets are then identified by tests of stability such as evaporation and compression. Next, the dynamics of the impact of a drop on a hydrophobic powder bed to form LMs is studied vis-à̀-vis that of drop impact on flat surfaces. The knowledge from drop impact phenomena on flat surfaces is used to build and complement insights to that of drop impact on powder surfaces. The maximum spread of the drop is empirically understood in terms of dimensionless numbers, and their drawbacks are highlighted. Various stages of drop impact-spreading, retraction and rebound, splashing, and final outcome-are systematically explored on both solid and hard surfaces. The implications of crater formation and energy dissipations are discussed in the case of granular beds. While the drop impact on solid surfaces is extensively reviewed, deep interpretation of the drop impact on granular surfaces needs to be improved. Additionally, the applications of each step in the sequence of drop impact phenomena on both substrates are also identified. Next, the criterion for the formation of peculiar jammed LMs was examined. Finally, the challenges and possible future perspectives are envisaged.
Collapse
Affiliation(s)
- Apoorva Sneha Ravi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Sameer Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
2
|
Wei Y, Maeda N. Dry Water as a Promoter for Gas Hydrate Formation: A Review. Molecules 2023; 28:molecules28093731. [PMID: 37175139 PMCID: PMC10180531 DOI: 10.3390/molecules28093731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Applications of clathrate hydrate require fast formation kinetics of it, which is the long-standing technological bottleneck due to mass transfer and heat transfer limitations. Although several methods, such as surfactants and mechanical stirring, have been employed to accelerate gas hydrate formation, the problems they bring are not negligible. Recently, a new water-in-air dispersion stabilized by hydrophobic nanosilica, dry water, has been used as an effective promoter for hydrate formation. In this review, we summarize the preparation procedure of dry water and factors affecting the physical properties of dry water dispersion. The effect of dry water dispersion on gas hydrate formation is discussed from the thermodynamic and kinetic points of view. Dry water dispersion shifts the gas hydrate phase boundary to milder conditions. Dry water increases the gas hydrate formation rate and improves gas storage capacity by enhancing water-guest gas contact. The performance comparison and synergy of dry water with other common hydrate promoters are also summarized. The self-preservation effect of dry water hydrate was investigated. Despite the prominent effect of dry water in promoting gas hydrate formation, its reusability problem still remains to be solved. We present and compare several methods to improve its reusability. Finally, we propose knowledge gaps in dry water hydrate research and future research directions.
Collapse
Affiliation(s)
- Yu Wei
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nobuo Maeda
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
3
|
Roy PK, Shoval S, Fujii S, Bormashenko E. Interfacial crystallization in the polyhedral liquid marbles. J Colloid Interface Sci 2023; 630:685-694. [DOI: 10.1016/j.jcis.2022.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
4
|
Wang Z, Zhu G, Wang Q, Ding K, Tong Y, Gao C. Preparation of hollow granules as micro-adsorber for uranium extraction from aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Sun Y, Zheng Y, Liu C, Zhang Y, Wen S, Song L, Zhao M. Liquid marbles, floating droplets: preparations, properties, operations and applications. RSC Adv 2022; 12:15296-15315. [PMID: 35693225 PMCID: PMC9118372 DOI: 10.1039/d2ra00735e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022] Open
Abstract
Liquid marbles (LMs) are non-wettable droplets formed with a coating of hydrophobic particles. They can move easily across either solid or liquid surfaces since the hydrophobic particles protect the internal liquid from contacting the substrate. In recent years, mainly due to their simple preparation, abundant materials, non-wetting/non-adhesive properties, elasticities and stabilities, LMs have been applied in many fields such as microfluidics, sensors and biological incubators. In this review, the recent advances in the preparation, physical properties and applications of liquid marbles, especially operations and floating abilities, are summarized. Moreover, the challenges to achieve uniformity, slow volatilization and stronger stability are pointed out. Various applications generated by LMs' structural characteristics are also expected.
Collapse
Affiliation(s)
- Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yihan Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Shiying Wen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| |
Collapse
|
6
|
Zhang J, Gu Y, Jiang J, Zheng R. pH-Responsive Liquid Marbles Based on Dihydroxystearic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5702-5707. [PMID: 35438998 DOI: 10.1021/acs.langmuir.2c00303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we report pH-responsive liquid marbles stabilized by 9,10-dihydroxystearic acid (DHSA). The particle morphology and the pH-responsive behavior of the liquid marbles were investigated. The rolling time during the preparation of liquid marbles has a great influence on the thickness of powder adsorption and the stability of the marbles. Compared with the liquid marbles stabilized by other fatty acids (e.g., stearic acid and docosoic acid), the liquid marbles prepared by DHSA have a much higher mechanical robustness. The increase in the number of hydroxyl groups on the carbon chain of fatty acids improves the mechanical robustness of the liquid marbles. Such liquid marbles immediately disintegrated on the surface of an alkaline solution or after exposure to NH3 gas, which extends their applications in the NH3 sensor and chemical reactions.
Collapse
Affiliation(s)
- Jianxin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Yao Gu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Raojun Zheng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
7
|
|
8
|
Tenjimbayashi M, Fujii S. How Liquid Marbles Break Down: Direct Evidence for Two Breakage Scenarios. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102438. [PMID: 34346161 DOI: 10.1002/smll.202102438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Liquid marbles are nonsticking droplets wrapped with hydrophobic nano- to micrometer particles and are expected to be useful for various applications, especially in industrial and biomedical fields. However, the practical use of liquid marbles is limited by their fragility. In this study, the dynamics of particle monolayer-stabilized liquid marble breakage upon impacting a solid surface are monitored in situ by high-speed interfacial microscopy. The experiments show that the breakage of liquid marbles can be induced by either i) cracking or ii) water penetration depending on the impact energy. The applicable scenario is determined by whether a jamming transition of the wrapping particles occurs during impact. The breakage mechanisms provide insights on how to improve the robustness of liquid marbles in accordance with these scenarios.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
9
|
Sulfur liquid marbles submerged in biphasic systems as microreactors for interfacial synthesis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Khobaib K, Mikkelsen A, Vincent-Dospital T, Rozynek Z. Electric-field-induced deformation, yielding, and crumpling of jammed particle shells formed on non-spherical Pickering droplets. SOFT MATTER 2021; 17:5006-5017. [PMID: 33908579 DOI: 10.1039/d1sm00125f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplets covered with densely packed solid particles, often called Pickering droplets, are used in a variety of fundamental studies and practical applications. For many applications, it is essential to understand the mechanics of such particle-laden droplets subjected to external stresses. Several research groups have studied theoretically and experimentally the deformation, relaxation, rotation, and stability of Pickering droplets. Most of the research concerns spherical Pickering droplets. However, little is known about non-spherical Pickering droplets with arrested particle shells subjected to compressive stress. The experimental results presented here contribute to filling this gap in research. We deform arrested non-spherical Pickering droplets by subjecting them to electric fields, and study the effect of droplet geometry and size, as well as particle size and electric field strength, on the deformation and yielding of arrested non-spherical Pickering droplets. We explain why a more aspherical droplet and/or a droplet covered with a shell made of larger particles required higher electric stress to deform and yield. We also show that an armored droplet can absorb the electric stress differently (i.e., through either in-plane or out-of-plane particle rearrangements) depending on the strength of the applied electric field. Furthermore, we demonstrate that particle shells may fail through various crumpling instabilities, including ridge formation, folding, and wrinkling, as well as inward indentation.
Collapse
Affiliation(s)
- K Khobaib
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - A Mikkelsen
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - T Vincent-Dospital
- PoreLab, The Njord Centre, Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway
| | - Z Rozynek
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland. and PoreLab, The Njord Centre, Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
11
|
Thayyil Raju L, Koshkina O, Tan H, Riedinger A, Landfester K, Lohse D, Zhang X. Particle Size Determines the Shape of Supraparticles in Self-Lubricating Ternary Droplets. ACS NANO 2021; 15:4256-4267. [PMID: 33601887 PMCID: PMC8023807 DOI: 10.1021/acsnano.0c06814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Supraparticles are large clusters of much smaller colloidal particles. Controlling the shape and anisotropy of supraparticles can enhance their functionality, enabling applications in fields such as optics, magnetics, and medicine. The evaporation of self-lubricating colloidal ouzo droplets is an easy and efficient strategy to create supraparticles, overcoming the problem of the "coffee-stain effect" during drop evaporation. Yet, the parameters that control the shape of the supraparticles formed in such evaporating droplets are not fully understood. Here, we show that the size of the colloidal particles determines the shape of the supraparticle. We compared the shape of the supraparticles made of seven different sizes of spherical silica particles, namely from 20 to 1000 nm, and of the mixtures of small and large colloidal particles at different mixing ratios. Specifically, our in situ measurements revealed that the supraparticle formation proceeds via the formation of a flexible shell of colloidal particles at the rapidly moving interfaces of the evaporating droplet. The time tc0 when the shell ceases to shrink and loses its flexibility is closely related to the size of particles. A lower tc0, as observed for smaller colloidal particles, leads to a flat pancake-like supraparticle, in contrast to a more curved American football-like supraparticle from larger colloidal particles. Furthermore, using a mixture of large and small colloidal particles, we obtained supraparticles that display a spatial variation in particle distribution, with small colloids forming the outer surface of the supraparticle. Our findings provide a guideline for controlling the supraparticle shape and the spatial distribution of the colloidal particles in supraparticles by simply self-lubricating ternary drops filled with colloidal particles.
Collapse
Affiliation(s)
- Lijun Thayyil Raju
- Physics
of Fluids Group, Faculty of Science and Technology, Mesa+ Institute
for Nanotechnology, Max Planck Center for Complex Fluid Dynamics,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Olga Koshkina
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Huanshu Tan
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Center
for Complex Flows and Soft Matter Research & Department of Mechanics
and Aerospace Engineering, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Andreas Riedinger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Detlef Lohse
- Physics
of Fluids Group, Faculty of Science and Technology, Mesa+ Institute
for Nanotechnology, Max Planck Center for Complex Fluid Dynamics,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
- Max
Planck Institute for Dynamics and Self-Organisation, Am Fassberg 17, 37077 Göttingen, Germany
| | - Xuehua Zhang
- Physics
of Fluids Group, Faculty of Science and Technology, Mesa+ Institute
for Nanotechnology, Max Planck Center for Complex Fluid Dynamics,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
- Department
of Chemical and Materials Engineering, University
of Alberta, 12-380 Donadeo
Innovation Centre for Engineering, Edmonton, T6G1H9 Alberta, Canada
| |
Collapse
|
12
|
Roy PK, Shoval S, Sharabi M, Bormashenko E. Soft lithography with liquid marbles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Salehabad SM, Azizian S. Elemental Sulfur-Stabilized Liquid Marbles: Properties and Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43201-43211. [PMID: 32852186 DOI: 10.1021/acsami.0c09846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfur-stabilized liquid marbles were readily prepared by rolling water droplets on a sulfur (S8) powder bed. Because of the construction of a gel layer on the surface of liquid marbles, the resulting liquid marbles have shape-designable characteristics. The effects of rolling time and volume of droplets on the deformability of sulfur-stabilized liquid marbles were investigated along with their mechanical stability and lifetime. The capability of sulfur-stabilized liquid marbles to be deformed at different pH values enables these liquid marbles to act as microreservoirs with desired shapes for aqueous solutions. Immersing the sulfur-stabilized liquid marbles into organic liquids leads to an increase in the liquid marbles' lifetime, and thereby they can survive at the interface of aqueous-organic two-phased systems for a long time. Finally, the applications of sulfur-stabilized liquid marbles as photocatalytic microreactors, electrochemical microcells, and monodisperse Pickering-like emulsions were demonstrated.
Collapse
Affiliation(s)
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|
14
|
Huang J, Wang Z, Shi H, Li X. Mechanical robustness of monolayer nanoparticle-covered liquid marbles. SOFT MATTER 2020; 16:4632-4639. [PMID: 32373907 DOI: 10.1039/d0sm00496k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Powder-derived liquid marbles (LMs) are versatile nonwetting systems but are confronted with many limitations in application, as their surface particles are usually large and agglomerated. Recently, sol-gel film-derived LMs have come on the scene that are termed monolayer nanoparticle-covered (mNPc) LMs based on their unique characteristics, revealing great application potential but also generating many questions. Here, mechanical robustness, a very important yet to be addressed property, of mNPc LMs was systematically studied. Rolling, pendant contact, and compression experiments were designed using bare and coated glasses with water contact angles (WCAs) ranging from 23° to 157°. With rupture as a quality criteria, the mechanical robustness of mNPc LMs enhanced with the hydrophobicity of solid surfaces that exerted pressure on them, but maintained much weaker than typical powder LMs until the solid surface was superhydrophobic. In particular, when contacting hydrophilic surfaces of WCAs ≤53°, an mNPc LM did not have the capacity for nonwetting and ruptured immediately, even if the pressure approached zero. This was distinct from powder LMs and indicated that a particle shell as thin as ∼20 nm could not prevent intermolecular attractions between the internal liquid and external solid surface. An interface scenario consisting of solid surface microroughness was proposed to address this issue. On the other hand, mNPc LMs remained unruptured on superhydrophobic surfaces but presented degraded elasticity under extreme compression. Uncovering these properties could be of much help for developments of mNPc LMs and their counterparts, the mNPc liquid plasticines.
Collapse
Affiliation(s)
- Junchao Huang
- School of Physical Science and Technology, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi'an, 710129, China.
| | | | | | | |
Collapse
|
15
|
Asaumi Y, Rey M, Vogel N, Nakamura Y, Fujii S. Particle Monolayer-Stabilized Light-Sensitive Liquid Marbles from Polypyrrole-Coated Microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2695-2706. [PMID: 32078776 DOI: 10.1021/acs.langmuir.0c00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid marbles are water droplets coated with solid particles that prevent coalescence and allow storage, transport, and handling of liquids in the form of a powder. Here, we report on the formation of liquid marbles that are stabilized entirely by a single monolayer of solid particles and thus minimize the amount of required solid material. As stabilizing particles, we synthesize relatively monodisperse, 80 μm-sized polystyrene (PS) particles coated with heptadecafluorooctanesulfonic acid-doped polypyrrole (PPy-C8F) shell (PS/PPy-C8F particles) by aqueous chemical oxidative seeded polymerization of pyrrole using FeCl3 as an oxidant and heptadecafluorooctanesulfonic acid as a hydrophobic dopant. We characterize the physicochemical properties of the particles as a function of the PPy-C8F loading. Laser diffraction particle size analyses of dilute aqueous suspensions indicate that the polymer particles disperse stably in water medium before and after coating with the PPy-C8F shell. X-ray photoelectron spectroscopy studies indicate the formation of a PPy-C8F shell around the PS seed particles, which was further supported by deflated morphologies observed by scanning electron microscopy after extraction of the PS component from the PS/PPy-C8F particles. We investigate the performance of the dried PS/PPy-C8F particles to stabilize liquid marbles. Stereo- and laser microscope observations, as well as gravimetric studies, confirm that the PS/PPy-C8F particles adsorb to the water droplet surface in the form of a particle monolayer with the characteristic hexagonal close-packed structure expected for spherical (colloidal) particles. Mechanical integrity of the liquid marble increases with an increase of PPy-C8F loading of the PS/PPy-C8F particles. The water contact angle of the PS/PPy-C8F particles at air-water interface increases from 82 ± 12° to 102 ± 17° with an increase of PPy-C8F loading. This increase in water contact angle directly correlates with the shape of the LM, with higher contact angles giving more spherical LMs. Furthermore, the broadband light absorption properties of the PPy coating was used to control evaporation rate of the enclosed water phase on demand by irradiation with a near-infrared laser. The evaporation rate could be finely controlled by the thickness of the PPy-C8F shell of the particles stabilizing the liquid marbles.
Collapse
Affiliation(s)
| | - Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | | | | |
Collapse
|
16
|
Liu W, Kappl M, Butt HJ. Tuning the Porosity of Supraparticles. ACS NANO 2019; 13:13949-13956. [PMID: 31789496 PMCID: PMC6933812 DOI: 10.1021/acsnano.9b05673] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/02/2019] [Indexed: 05/21/2023]
Abstract
Supraparticles consisting of nano- or microparticles have potential applications as, for example, photonic crystals, drug carriers, or heterogeneous catalysts. To avoid the use of solvent or processing liquid, one can make supraparticles by evaporating droplets of aqueous suspensions from super-liquid-repellent surfaces. Herein, a method to adjust the porosity of supraparticles is described; a high porosity is desired, for example, in catalysis. To prepare highly porous TiO2 supraparticles, polymer nanoparticles are co-dispersed in the suspension. Supraparticles are formed through evaporation of aqueous suspension droplets on superamphiphobic surfaces followed by calcination of the sacrificial polymer particles. The increase of porosity of up to 92% resulted in enhanced photocatalytic activity while maintaining sufficient mechanical stability.
Collapse
|
17
|
Fujii S. Stimulus-responsive soft dispersed systems developed based on functional polymer particles: bubbles and liquid marbles. Polym J 2019. [DOI: 10.1038/s41428-019-0233-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Mahmoudi Salehabad S, Azizian S, Fujii S. Shape-Designable Liquid Marbles Stabilized by Gel Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8950-8960. [PMID: 31179706 DOI: 10.1021/acs.langmuir.9b01473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Shape-designable liquid marbles were simply prepared by rolling the water droplets over the stearic acid powder for several seconds to encapsulate them. The effects of droplet volume, pH, and rolling time on the deformability of liquid marbles from sphere were investigated. The stearic acid-stabilized liquid marbles can be deformed to any desirable and stable shapes including ellipsoids and letters, thanks to the gel layer formed at liquid marble surfaces during the preparation. The gel layer works as a flexible and plastic membrane, which makes the liquid marbles irreversibly deformable. Finally, the applications of the liquid marbles as a microreactor were demonstrated.
Collapse
Affiliation(s)
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry , Bu-Ali Sina University , Hamedan 65167 , Iran
| | | |
Collapse
|
19
|
Kasahara M, Akimoto SI, Hariyama T, Takaku Y, Yusa SI, Okada S, Nakajima K, Hirai T, Mayama H, Okada S, Deguchi S, Nakamura Y, Fujii S. Liquid Marbles in Nature: Craft of Aphids for Survival. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6169-6178. [PMID: 30991804 DOI: 10.1021/acs.langmuir.9b00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some aphids that live in the leaf galls of the host plant are known to fabricate liquid marbles consisting of honeydew and wax particles as an inner liquid and a stabilizer, respectively. In this study, the liquid marbles fabricated by the galling aphids, Eriosoma moriokense, were extensively characterized with respect to size and size distribution, shape, nanomorphology, liquid/solid weight ratio, and chemical compositions. The stereo microscopy studies confirmed that the liquid marbles have a near-spherical morphology and that the number-average diameter was 368 ± 152 μm, which is 1 order of magnitude smaller than the capillary length of the honeydew. The field emission scanning electron microscopy studies indicated that micrometer-sized wax particles with fiber- and dumpling-like shapes coated the honeydew droplets, which rendered the liquid marbles hydrophobic and nonwetting. Furthermore, the highly magnified scanning electron microscopy images confirmed that the wax particles were formed with assemblage of submicrometer-sized daughter fibers. The contact angle measurements indicated that the wax was intrinsically hydrophobic and that the liquid marbles were stabilized by the wax particles in the Cassie-Baxter model. The weight ratio of the honeydew and the wax particles was determined to be 96/4, and the honeydew consisted of 19 wt % nonvolatile components and 81 wt % water. The 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and mass spectroscopy studies confirmed that the wax mainly consisted of triglycerides and that the honeydew mainly consisted of saccharides (glucose and fructose) and ribitol. The atomic force microscopy studies confirmed that honeydew is sticky in nature.
Collapse
Affiliation(s)
- Moe Kasahara
- Division of Applied Chemistry , Graduate School of Engineering, Osaka Institute of Technology , 5-16-1, Omiya, Asahi-ku , Osaka 535-8585 , Japan
| | - Shin-Ichi Akimoto
- Department of Ecology and Systematics , Graduate School of Agriculture, Hokkaido University , Kita 9, Nishi 9, Kita-ku , Sapporo 060-8589 , Japan
| | - Takahiko Hariyama
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research , Hamamatsu University School of Medicine, Higashi-ku , Hamamatsu 431-3192 , Japan
| | - Yasuharu Takaku
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research , Hamamatsu University School of Medicine, Higashi-ku , Hamamatsu 431-3192 , Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| | - Shun Okada
- Division of Applied Chemistry , Graduate School of Engineering, Osaka Institute of Technology , 5-16-1, Omiya, Asahi-ku , Osaka 535-8585 , Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology 2-12-1 O-okayama , Meguro, Tokyo 152-8552 Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
- Nanomaterials Microdevices Research Center , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
| | - Hiroyuki Mayama
- Department of Chemistry , Asahikawa Medical University , 2-1-1-1 Midorigaoka-Higashi , Asahikawa 078-8510 , Japan
| | - Satoshi Okada
- Research Center for Bioscience and Nanoscience , Japan Agency for Marine-Earth Science and Technology (JAMSTEC) , 2-15 Natsushima-cho , Yokosuka 237-0061 , Japan
| | - Shigeru Deguchi
- Research Center for Bioscience and Nanoscience , Japan Agency for Marine-Earth Science and Technology (JAMSTEC) , 2-15 Natsushima-cho , Yokosuka 237-0061 , Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
- Nanomaterials Microdevices Research Center , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
- Nanomaterials Microdevices Research Center , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
| |
Collapse
|