1
|
Gamble JF, Al-Obaidi H. Past, Current, and Future: Application of Image Analysis in Small Molecule Pharmaceutical Development. J Pharm Sci 2024; 113:3012-3027. [PMID: 39153662 DOI: 10.1016/j.xphs.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The often-perceived limitations of image analysis have for many years impeded the widespread application of such systems as first line characterisation tools. Image analysis has, however, undergone a notable resurgence in the pharmaceutical industry fuelled by developments system capabilities and the desire of scientists to characterize the morphological nature of their particles more adequately. The importance of particle shape as well as size is now widely acknowledged. With the increasing use of modelling and simulations, and ongoing developments though the integration of machine learning and artificial intelligence, the utility of image analysis is increasing significantly driven by the richness of the data obtained. Such datasets provide means to circumvent the requirement to rely on less informative descriptors and enable the move towards the use of whole distributions. Combining the improved particle size and shape measurement and description with advances in modelling and simulations is enabling improved means to elucidate the link between particle and bulk powder properties. In addition to improved capabilities to describe input materials, approaches to characterize single components within multicomponent systems are providing scientists means to understand how their material may change during manufacture thus providing a means to link the behaviour of final dosage forms with the particle properties at the point of action. The aim is to provide an overview of image analysis and update readers with innovations and capabilities to other methods in the small molecule arena. We will also describe the use of AI for the improved analysis using image analysis.
Collapse
Affiliation(s)
- John F Gamble
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK; Department of Pharmacy, University of Reading, Reading RG6 6AH, UK.
| | - Hisham Al-Obaidi
- Department of Pharmacy, University of Reading, Reading RG6 6AH, UK
| |
Collapse
|
2
|
Clarke J, Gamble JF, Jones JW, Tobyn M, Ingram A, Greenwood R. Determining the Impact of Roller Compaction Processing Conditions on Granulate and API Properties: Impact of Formulation API Load. AAPS PharmSciTech 2024; 25:24. [PMID: 38267745 DOI: 10.1208/s12249-024-02744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Previous work demonstrated that roller compaction of a 40%w/w theophylline-loaded formulation resulted in granulate consisting of un-compacted fractions which were shown to constitute between 34 and 48%v/v of the granulate dependent on processing conditions. The active pharmaceutical ingredient (API) primary particle size within the un-compacted fraction was also shown to have undergone notable size reduction. The aim of the current work was to test the hypothesis that the observations may be more indicative of the relative compactability of the API due to the formulation being above the percolation threshold. This was done by assessing the impact of varied API loads in the formulation on the non-granulated fraction of the final granulate and the extent of attrition of API particles within the non-granulated fraction. The influence of processing conditions for all formulations was also investigated. The results verify that the observations, both of this study and the previous work, are not a consequence of exceeding the percolation threshold. The volume of un-compacted material within the granulate samples was observed to range between 34.7 and 65.5% depending on the API load and roll pressure, whilst the API attrition was equivalent across all conditions.
Collapse
Affiliation(s)
- James Clarke
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - John F Gamble
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK.
| | - John W Jones
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK
| | - Mike Tobyn
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK
| | - Andrew Ingram
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Greenwood
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Péterfi O, Madarász L, Ficzere M, Lestyán-Goda K, Záhonyi P, Erdei G, Sipos E, Nagy ZK, Galata DL. In-line particle size measurement during granule fluidization using convolutional neural network-aided process imaging. Eur J Pharm Sci 2023; 189:106563. [PMID: 37582409 DOI: 10.1016/j.ejps.2023.106563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
This paper presents a machine learning-based image analysis method to monitor the particle size distribution of fluidized granules. The key components of the direct imaging system are a rigid fiber-optic endoscope, a light source and a high-speed camera, which allow for real-time monitoring of the granules. The system was implemented into a custom-made 3D-printed device that could reproduce the particle movement characteristic in a fluidized-bed granulator. The suitability of the method was evaluated by determining the particle size distribution (PSD) of various granule mixtures within the 100-2000 μm size range. The convolutional neural network-based software was able to successfully detect the granules that were in focus despite the dense flow of the particles. The volumetric PSDs were compared with off-line reference measurements obtained by dynamic image analysis and laser diffraction. Similar trends were observed across the PSDs acquired with all three methods. The results of this study demonstrate the feasibility of performing real-time particle size analysis using machine vision as an in-line process analytical technology (PAT) tool.
Collapse
Affiliation(s)
- Orsolya Péterfi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Lajos Madarász
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Máté Ficzere
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Katalin Lestyán-Goda
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Petra Záhonyi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Gábor Erdei
- Department of Atomic Physics, Faculty of Natural Sciences, Budapest University of Technology and Economics, H-1111, Budapest, Budafoki 8, Hungary
| | - Emese Sipos
- Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
4
|
The Role of Titanium Dioxide (E171) and the Requirements for Replacement Materials in Oral Solid Dosage Forms: An IQ Consortium Working Group Review. J Pharm Sci 2022; 111:2943-2954. [PMID: 35973604 DOI: 10.1016/j.xphs.2022.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
Titanium dioxide (in the form of E171) is a ubiquitous excipient in tablets and capsules for oral use. In the coating of a tablet or in the shell of a capsule the material disperses visible and UV light so that the contents are protected from the effects of light, and the patient or caregiver cannot see the contents within. It facilitates elegant methods of identification for oral solid dosage forms, thus aiding in the battle against counterfeit products. Titanium dioxide ensures homogeneity of appearance from batch to batch fostering patient confidence. The ability of commercial titanium dioxide to disperse light is a function of the natural properties of the anatase polymorph of titanium dioxide, and the manufacturing processes used to produce the material utilized in pharmaceuticals. In some jurisdictions E171 is being considered for removal from pharmaceutical products, as a consequence of it being delisted as an approved colorant for foods. At the time of writing, in the view of the authors, no system or material which could address both current and future toxicological concerns of Regulators and the functional needs of the pharmaceutical industry and patients has been identified. This takes into account the assessment of materials such as calcium carbonate, talc, isomalt, starch and calcium phosphates. In this paper an IQ Consortium team outlines the properties of titanium dioxide and criteria to which new replacement materials should be held.
Collapse
|
5
|
Clarke J, Gamble JF, Jones JW, Tobyn M, Dawson N, Davies C, Ingram A, Greenwood R. Determining the Impact of Roller Compaction Processing Conditions on Granule and API Properties. AAPS PharmSciTech 2020; 21:218. [PMID: 32743765 DOI: 10.1208/s12249-020-01773-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
The attrition of drug particles during the process of dry granulation, which may (or may not) be incorporated into granules, could be an important factor in determining the subsequent performance of that granulation, including key factors such as sticking to punches and bio-performance of the dosage form. It has previously been demonstrated that such attrition occurs in one common dry granulation process train; however, the fate of these comminuted particles in granules was not determined. An understanding of the phenomena of attrition and incorporation into granule will improve our ability to understand the performance of granulated systems, ultimately leading to an improvement in our ability to optimize and model the process. Unique feeding mechanisms, geometry, and milling systems of roller compaction equipment mean that attrition could be more or less substantial for any given equipment train. In this work, we examined attrition of API particles and their incorporation into granule in an equipment train from Gerteis, a commonly used equipment train for dry granulation. The results demonstrate that comminuted drug particles can exist free in post-milling blends of roller compaction equipment trains. This information can help better understand the performance of the granulations, and be incorporated into mechanistic models to optimize such processes.
Collapse
|
6
|
Demonstration of the Feasibility of Predicting the Flow of Pharmaceutically Relevant Powders from Particle and Bulk Physical Properties. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09433-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
A Proposal for an Alternative Approach to Particle Size Method Development During Early-Stage Small Molecule Pharmaceutical Development. J Pharm Sci 2019; 108:3515-3520. [DOI: 10.1016/j.xphs.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
|