1
|
Mathew J, John N, Mathew B. Graphene oxide-incorporated silver-based photocatalysts for enhanced degradation of organic toxins: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16817-16851. [PMID: 36595177 DOI: 10.1007/s11356-022-25026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Environmental contamination and scarcity of energy have been deepening over the last few decades. Heterogeneous photocatalysis plays a prominent role in environmental remediation. The failure of earlier metal oxide systems like pure TiO2 and ZnO as stable visible-light photocatalysts demanded more stable catalysts with high photodegradation efficiency. Silver-based semiconductor materials gained popularity as visible-light-responsive photocatalysts with a narrow bandgap. But their large-scale usage in natural water bodies for organic contaminant removal is minimal. The factors like self-photocorrosion and their slight solubility in water have prevented the commercial use. Various efforts have been made to improve their photocatalytic activity. This review focuses on those studies in which silver-based semiconductor materials are integrated with carbonaceous graphene oxide (GO) and reduced graphene oxide (RGO). The decoration of Ag-based semiconductor components on graphene oxide having high-surface area results in binary composites with enhanced visible-light photocatalytic activity and stability. It is found that the introduction of new efficient materials further increases the effectiveness of the system. So binary and ternary composites of GO and Ag-based materials are reviewed in this paper.
Collapse
Affiliation(s)
- Jincy Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Neenamol John
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| |
Collapse
|
2
|
Singh KB, Gautam N, Updhyay DD, Pandey G. Sonication-assisted synthesis of Ag@AgCl and Ag@AgCl-GO and their photocatalytic performances. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Zhang J, Qin C, Liu L, Dong H, Wang Y, Bao L, Gan W, Fu X, Hao H. Synthesis of an Ag@AgCl catalyst with amorphous copper as the support and its catalytic performance in the reduction of 4-nitrophenol. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820942018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The support used in a composite catalyst has an important influence on the catalytic performance of the catalyst. Amorphous metals have good electron-transfer properties and the presence of defect structures on the surface will introduce additional active sites and should be excellent catalyst supports. In this study, an Ag@AgCl composite catalyst with amorphous Cu (a-Cu) as the support is prepared by a two-step precipitation method at room temperature and a light irradiation reduction method. Compared to the Ag@AgCl and a-Cu, the catalytic rate of the Ag@AgCl/a-Cu composite catalytic rate was 2.04 times and 6.69 times faster during the reduction of 4-NP in NaBH4 aqueous solution. The high-performance catalytic efficiency and reusability of Ag@AgCl/a-Cu may be attributed to the synergistic effect between Ag@AgC and amorphous metal elements. This work may provide an effective reference for the synthesis of high activity catalysts using amorphous metals as supports.
Collapse
Affiliation(s)
- Jian Zhang
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu’an, P.R. China
| | - Chenchen Qin
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu’an, P.R. China
| | - Luying Liu
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu’an, P.R. China
| | - Hanfeng Dong
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu’an, P.R. China
| | - Yujuan Wang
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu’an, P.R. China
| | - Lei Bao
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu’an, P.R. China
| | - Wei Gan
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu’an, P.R. China
| | - Xucheng Fu
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu’an, P.R. China
| | - Hequn Hao
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu’an, P.R. China
| |
Collapse
|
4
|
Photo-assisted Ag/AgCl nanoparticle formation process can be used in the degradation of fluorescent dyes. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|