1
|
Segura-Sanchis E, Moreno A, Ramiro-Manzano F, Fenollosa R, Feliz M, Atienzar P. Optoelectronic properties of octahedral molybdenum cluster-based materials at a single crystal level. Dalton Trans 2023; 52:17818-17825. [PMID: 37971064 DOI: 10.1039/d3dt02501b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Octahedral molybdenum (Mo6) clusters constitute suitable building blocks for the design of promising single crystal materials in the field of optoelectronics. Here, we prepared single crystals composed of hydroxo Mo6X8 (X = Br, Cl) cluster complexes interconnected by H-bonding interactions with water molecules and protons. The optoelectronic responses and the absorption and emission spectra of these cluster-based single crystals were acquired upon light irradiation, and they show dependency on the nature of the halogens, with the brominated cluster being the most conductive. A fast photoelectrical response was recorded and it showed remarkable stability after multiple illumination on/off cycles. The results obtained provide relevant information for the development of photonic and optoelectronic devices, sensors and photocatalysts.
Collapse
Affiliation(s)
- Elena Segura-Sanchis
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Ana Moreno
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Fernando Ramiro-Manzano
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Roberto Fenollosa
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Marta Feliz
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Pedro Atienzar
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
2
|
Vorotnikov YA, Vorotnikova NA, Shestopalov MA. Silica-Based Materials Containing Inorganic Red/NIR Emitters and Their Application in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5869. [PMID: 37687562 PMCID: PMC10488461 DOI: 10.3390/ma16175869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
The low absorption of biological substances and living tissues in the red/near-infrared region (therapeutic window) makes luminophores emitting in the range of ~650-1350 nm favorable for in vitro and in vivo imaging. In contrast to commonly used organic dyes, inorganic red/NIR emitters, including ruthenium complexes, quantum dots, lanthanide compounds, and octahedral cluster complexes of molybdenum and tungsten, not only exhibit excellent emission in the desired region but also possess additional functional properties, such as photosensitization of the singlet oxygen generation process, upconversion luminescence, photoactivated effects, and so on. However, despite their outstanding functional applicability, they share the same drawback-instability in aqueous media under physiological conditions, especially without additional modifications. One of the most effective and thus widely used types of modification is incorporation into silica, which is (1) easy to obtain, (2) biocompatible, and (3) non-toxic. In addition, the variety of morphological characteristics, along with simple surface modification, provides room for creativity in the development of various multifunctional diagnostic/therapeutic platforms. In this review, we have highlighted biomedical applications of silica-based materials containing red/NIR-emitting compounds.
Collapse
Affiliation(s)
- Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| | | | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| |
Collapse
|
3
|
Nguyen NTK, Lebastard C, Wilmet M, Dumait N, Renaud A, Cordier S, Ohashi N, Uchikoshi T, Grasset F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb 6, Mo 6, Ta 6, W 6, Re 6): inorganic 0D and 2D powders and films. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:547-578. [PMID: 36212682 PMCID: PMC9542349 DOI: 10.1080/14686996.2022.2119101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 05/29/2023]
Abstract
This review is dedicated to various functional nanoarchitectonic nanocomposites based on molecular octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6). Powder and film nanocomposites with two-dimensional, one-dimensional and zero-dimensional morphologies are presented, as well as film matrices from organic polymers to inorganic layered oxides. The high potential and synergetic effects of these nanocomposites for biotechnology applications, photovoltaic, solar control, catalytic, photonic and sensor applications are demonstrated. This review also provides a basic level of understanding how nanocomposites are characterized and processed using different techniques and methods. The main objective of this review would be to provide guiding significance for the design of new high-performance nanocomposites based on transition metal atom clusters.
Collapse
Affiliation(s)
- Ngan T. K. Nguyen
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- International Center for Young Scientists, ICYS-Sengen, Global Networking Division, NIMS, Tsukuba, Japan
| | - Clément Lebastard
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Maxence Wilmet
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
- Saint Gobain Research Paris, Aubervilliers, France
| | - Noée Dumait
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Adèle Renaud
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | | | - Naoki Ohashi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Tetsuo Uchikoshi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Fabien Grasset
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| |
Collapse
|
4
|
de la Torre C, Gavara R, García-Fernández A, Mikhaylov M, Sokolov MN, Miravet JF, Sancenón F, Martínez-Máñez R, Galindo F. Enhancement of photoactivity and cellular uptake of (Bu 4N) 2[Mo 6I 8(CH 3COO) 6] complex by loading on porous MCM-41 support. Photodynamic studies as an anticancer agent. BIOMATERIALS ADVANCES 2022; 140:213057. [PMID: 36007463 DOI: 10.1016/j.bioadv.2022.213057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022]
Abstract
The incorporation by ionic assembly of the hexanuclear molybdenum cluster (Bu4N)2[Mo6I8(CH3CO2)6] (1) in amino-decorated mesoporous silica nanoparticles MCM-41, has yielded the new molybdenum-based hybrid photosensitizer 1@MCM-41. The new photoactive material presents a high porosity, due to the intrinsic high specific surface area of MCM-41 nanoparticles (989 m2 g-1) which is responsible for the good dispersion of the hexamolybdenum clusters on the nanoparticles surface, as observed by STEM analysis. The hybrid photosensitizer can generate efficiently singlet oxygen, which was demonstrated by using the benchmark photooxygenation reaction of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA) in water. The photodynamic therapy activity has been tested using LED light as an irradiation source (λirr ~ 400-700 nm; 15.6 mW/cm2). The results show a good activity of the hybrid photosensitizer against human cervical cancer (HeLa) cells, reducing up to 70 % their viability after 20 min of irradiation, whereas low cytotoxicity is detected in the darkness. The main finding of this research is that the incorporation of molybdenum complexes at porous MCM-41 supports enhances their photoactivity and improves cellular uptake, compared to free clusters.
Collapse
Affiliation(s)
- Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Raquel Gavara
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Maxim Mikhaylov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Juan F Miravet
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain.
| | - Francisco Galindo
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
5
|
Pan H, Yang L, Liu G, Wang X. Preparation, characterization, and application of hollow
nano‐TiO
2
@modified graphene/fluorinated copolymer nanocomposite leather finishing agents. J Appl Polym Sci 2022. [DOI: 10.1002/app.52632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hui Pan
- College of Chemistry and Chemical Engineering Institute of Functional Polymer Composites, Henan University Kaifeng China
| | - Lin Yang
- College of Chemistry and Chemical Engineering Institute of Functional Polymer Composites, Henan University Kaifeng China
| | - Guoxing Liu
- College of Chemistry and Chemical Engineering Institute of Functional Polymer Composites, Henan University Kaifeng China
| | - Xiaodong Wang
- Engineering Research Center for Nanomaterials Henan University Kaifeng China
| |
Collapse
|
6
|
Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo 6 Iodide Clusters Supported on Graphene Oxide. NANOMATERIALS 2020; 10:nano10071259. [PMID: 32605229 PMCID: PMC7407389 DOI: 10.3390/nano10071259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Catalytic properties of the cluster compound (TBA)2[Mo6Ii8(O2CCH3)a6] (TBA = tetrabutylammonium) and a new hybrid material (TBA)2Mo6Ii8@GO (GO = graphene oxide) in water photoreduction into molecular hydrogen were investigated. New hybrid material (TBA)2Mo6Ii8@GO was prepared by coordinative immobilization of the (TBA)2[Mo6Ii8(O2CCH3)a6] onto GO sheets and characterized by spectroscopic, analytical, and morphological techniques. Liquid and, for the first time, gas phase conditions were chosen for catalytic experiments under UV–Vis irradiation. In liquid water, optimal H2 production yields were obtained after using (TBA)2[Mo6Ii8(O2CCH3)a6] and (TBA)2Mo6Ii8@GO) catalysts after 5 h of irradiation of liquid water. Despite these remarkable catalytic performances, “liquid-phase” catalytic systems have serious drawbacks: the cluster anion evolves to less active cluster species with partial hydrolytic decomposition, and the nanocomposite completely decays in the process. Vapor water photoreduction showed lower catalytic performance but offers more advantages in terms of cluster stability, even after longer radiation exposure times and recyclability of both catalysts. The turnover frequency (TOF) of (TBA)2Mo6Ii8@GO is three times higher than that of the microcrystalline (TBA)2[Mo6Ii8(O2CCH3)a6], in agreement with the better accessibility of catalytic cluster sites for water molecules in the gas phase. This bodes well for the possibility of creating {Mo6I8}4+-based materials as catalysts in hydrogen production technology from water vapor.
Collapse
|