1
|
Britton B, Zhang F, Anthony DB, Reyes CIDL, Pawlus M, Williams GR, Clancy AJ. Nanopasta: electrospinning nanofibers of white flour. NANOSCALE ADVANCES 2024:d4na00601a. [PMID: 39583133 PMCID: PMC11580803 DOI: 10.1039/d4na00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
White flour may be directly electrospun, providing a starch nanofiber alternative which avoids unnecessary industrial extraction and purification. By dissolving 17 wt% flour in warm formic acid and cooling, a dope can be created which can be electrospun into porous mats of 372 nm fibers of pasta.
Collapse
Affiliation(s)
- Beatrice Britton
- Department of Chemistry, University College London London WC1E 6BT UK
- UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Fangyuan Zhang
- UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - David B Anthony
- Department of Chemistry, Imperial College London London W12 0BZ UK
| | | | - Michal Pawlus
- Department of Chemistry, University College London London WC1E 6BT UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Adam J Clancy
- Department of Chemistry, University College London London WC1E 6BT UK
| |
Collapse
|
2
|
Kim SY, Park SY, Lee JH, Kim N, Oh HN, Yoo SY, Lee DS, Lee JC. Therapeutic Potential of Mangosteen Pericarp Extract-Loaded Liposomes against Superficial Skin Infection Caused by Staphylococcus pseudintermedius in a Murine Model. Antibiotics (Basel) 2024; 13:612. [PMID: 39061294 PMCID: PMC11274295 DOI: 10.3390/antibiotics13070612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
α-mangostin (α-MG) demonstrates antibacterial activity against Staphylococcus species. Therefore, this study aimed to explore the antibacterial activity of α-MG-rich mangosteen pericarp extract (MPE)-loaded liposomes against Staphylococcus isolates from companion animal skin diseases in vitro and evaluated their therapeutic potential in a murine model of superficial skin infection caused by S. pseudintermedius. α-MG-rich extract was purified from mangosteen pericarp and then complexed with γ-cyclodextrin (γ-CD), forming the inclusion complexes. Nanoliposomes containing MPE and γ-CD complexes were prepared by adding lecithin and casein. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of MPE-loaded liposomes were determined using agar dilution and broth microdilution methods. The therapeutic potential of MPE-loaded liposomes was evaluated in vivo on tape-stripped skin lesions infected with S. pseudintermedius. Purified MPE and MPE-loaded liposomes contained 402.43 mg/g and 18.18 mg/g α-MG, respectively. MPE-loaded liposomes showed antibacterial activity against clinical Staphylococcus isolates in vitro but did not show antibacterial activity against Gram-negative bacterial isolates. MPE-loaded liposomes demonstrated consistent MICs and MBCs against Staphylococcus isolates. These liposomes significantly reduced bacterial numbers and lesional sizes in a superficial skin infection model. Moreover, they reconstructed the epidermal barrier in skin lesions. The therapeutic concentrations of MPE-loaded liposomes did not induce cytotoxicity in canine progenitor epidermal keratinocyte cells. In conclusion, MPE-loaded liposomes hold promise for the development of a prospective topical formulation to treat superficial pyoderma in companion animals.
Collapse
Affiliation(s)
- Seong-Yeop Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Seong-Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Jung-Hwa Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Ha-Na Oh
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - So-Young Yoo
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - Dae-Sung Lee
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Luthfianti H, Waresindo WX, Edikresnha D, Chahyadi A, Suciati T, Noor FA, Khairurrijal K. Physicochemical Characteristics and Antibacterial Activities of Freeze-Thawed Polyvinyl Alcohol/Andrographolide Hydrogels. ACS OMEGA 2023; 8:2915-2930. [PMID: 36713706 PMCID: PMC9878633 DOI: 10.1021/acsomega.2c05110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
Andrographolide (AG) is one of the compounds in Andrographis paniculata, which has a high antibacterial activity. This paper reports the freeze-thaw method's use to synthesize polyvinyl alcohol (PVA) hydrogels loaded with AG and its characterization. From the morphological examination, the porosity of the PVA/AG hydrogel was found to increase with the increasing AG concentration. The swelling degree test revealed that the hydrogels' maximum swelling degrees were generally greater than 100%. The composite hydrogel with the highest fraction of andrographolide (PAG-4) showed greater weight loss than the hydrogel without AG (PAG-0). The molecular interaction between PVA and AG resulted in the narrowing of the band attributed to the O-H and C=O stretching bonds and the emergence of an amorphous domain in the composite hydrogels. The loading of AG disrupted the formation of hydroxyl groups in PVA and interrupted the cross-linking between PVA chains, which lead to the decrease of the compression strength and the crystallinity increased with increasing AG. The antibacterial activity of the composite hydrogel increased with increasing AG. The PAG-4 hydrogel had the highest antibacterial activity of 37.9 ± 4.6b %. Therefore, the PVA/AG hydrogel has the potential to be used as an antibacterial device.
Collapse
Affiliation(s)
- Halida
Rahmi Luthfianti
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
| | - William Xaveriano Waresindo
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
| | - Dhewa Edikresnha
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Bioscience
and Biotechnology Research Center, University
Center of Excellence for Nutraceuticals, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Jawa Barat 40132, Indonesia
| | - Agus Chahyadi
- Bioscience
and Biotechnology Research Center, University
Center of Excellence for Nutraceuticals, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Jawa Barat 40132, Indonesia
| | - Tri Suciati
- Department
of Pharmaceutics, School of Pharmacy, Institut
Teknologi Bandung, Jalan Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
| | - Fatimah Arofiati Noor
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
| | - Khairurrijal Khairurrijal
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Bioscience
and Biotechnology Research Center, University
Center of Excellence for Nutraceuticals, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Jawa Barat 40132, Indonesia
- Department
of Physics, Faculty of Science, Institut
Teknologi Sumatera, Jalan
Terusan Ryacudu, Lampung Selatan 35365, Indonesia
| |
Collapse
|
4
|
Hussein AK, Elbeih A, Mokhtar M, Abdelhafiz M. Spun of improvised cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-D]-Imidazole (BCHMX) in polystyrene nanofibrous membrane by electrospinning techniques. BMC Chem 2022; 16:59. [PMID: 35945603 PMCID: PMC9364567 DOI: 10.1186/s13065-022-00853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Development of ultra-fine fiber technology and nano-sized materials are widely taking place to enhance the characteristic of different materials. In our study, a newly developed technique was used to produce improvised nano energetic fibers with the exploitation of cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d] imidazole (BCHMX) to spin in a polystyrene nanofiber membrane. Scanning electron microscopy (SEM) showed the synthesized nanofibrous polystyrene (PS)/BCHMX sheets with clear and continual fiber were imaged with scanning electron microscopy (SEM). Characterization of the produced nanofiber was examined by Fourier Transform Infrared (FTIR), and X-ray diffractometer (XRD). Explosive sensitivity was also evaluated by both BAM impact and friction apparatus. Thermal behavior for the synthesized PS/BCHMX fiber and the pure materials were also investigated by thermal gravimetric analysis (TGA). The results show enhancement in the fabrication of nano energetic fibers with a size of 200-460 nm. The TG confirms the high weight percentage of BCHMX which reaches 60% of the total mass. PS/BCHMX fiber was confirmed with the XRD, FTIR spectrum. Interestingly, XRD sharp peaks showed the conversion of amorphous PS via electrospinning into crystalline shape regarding the applied high voltage. The synthesized PS/BCHMX nanofiber was considered insensitive to the mechanical external stimuli; more than 100 J impact energy and > 360 N initiation force as friction stimuli. PS/BCHMX is considering a candidate tool to deal with highly sensitive explosives safely and securely for explosives detection training purposes.
Collapse
Affiliation(s)
| | - Ahmed Elbeih
- Military Technical College, Kobry Elkobbah, Cairo, Egypt.
| | | | | |
Collapse
|
5
|
Waresindo WX, Luthfianti HR, Edikresnha D, Suciati T, Noor FA, Khairurrijal K. A freeze-thaw PVA hydrogel loaded with guava leaf extract: physical and antibacterial properties. RSC Adv 2021; 11:30156-30171. [PMID: 35480264 PMCID: PMC9040922 DOI: 10.1039/d1ra04092h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
A polyvinyl alcohol (PVA) hydrogel loaded with guava leaf extract (GLE) has potential applications as a wound dressing with good antibacterial activity. This study succeeded in fabricating a PVA hydrogel containing GLE using the freeze-thaw (FT) method. By varying the GLE concentration, we can adjust the physical properties of the hydrogel. The addition of GLE results in a decrease in cross-linking during gelation and an increase in the pore size of the hydrogels. The increase of the pore size made the swelling increase and the mechanical strength decrease. The weight loss of the hydrogel also increases because the phosphate buffer saline (PBS) dissolves the GLE. Increasing the GLE concentration caused the Fourier-transform infrared (FTIR) absorbance peaks to widen due to hydrogen bonds formed during the FT process. The crystalline phase was transformed into an amorphous phase in the PVA/GLE hydrogel based on the X-ray diffraction (XRD) spectra. The differential scanning calorimetry (DSC) characterization showed a significant decrease in the hydrogel weight over temperatures of 30-150 °C due to the evaporation of water from the hydrogel matrix. The zone of inhibition of the PVA/GLE hydrogel increased with antibacterial activity against Staphylococcus aureus of 17.93% per gram and 15.79% per gram against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- William Xaveriano Waresindo
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Halida Rahmi Luthfianti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Dhewa Edikresnha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Tri Suciati
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Fatimah Arofiati Noor
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| |
Collapse
|