1
|
Liu J, Xu W, Liu Y, Wang Y, Zhang J, Wang Z, Mai K, Ai Q. Effects of Chitosan-Coated Microdiet on Dietary Physical Properties, Growth Performance, Digestive Enzyme Activities, Antioxidant Capacity, and Inflammation Response of Large Yellow Croaker ( Larimichthys crocea) Larvae. AQUACULTURE NUTRITION 2022; 2022:4355182. [PMID: 36860430 PMCID: PMC9973130 DOI: 10.1155/2022/4355182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 05/13/2023]
Abstract
A 30-day feeding trial was designed to investigate the physical properties of chitosan-coated microdiet (CCD) and the effect of CCD on survival, growth performance, activities of digestive enzymes, intestinal development, antioxidant capacity, and inflammatory response of large yellow croaker larvae (initial weight: 3.81 ± 0.20 mg). Four isonitrogenous (50% crude protein) and isolipidic (20% crude lipid) microdiets were prepared with different concentrations of chitosan wall material by spray drying method (0.00%, 0.30%, 0.60%, and 0.90%, weight (chitosan) : volume (acetic acid)). Results showed that the lipid encapsulation efficiency (control: 60.52%, Diet1: 84.63%, Diet2: 88.06%, Diet3: 88.65%) and nitrogen retention efficiency (control: 63.76%, Diet1: 76.14%, Diet2: 79.52%, Diet3: 84.68%) correlated positively with the concentration of wall material (P < 0.05). Furthermore, the loss rate of CCD was significantly lower than the uncoated diet. Larvae fed the diet with 0.60% CCD had significantly higher specific growth rate (13.52 and 9.95%/day) and survival rate (14.73 and 12.58%) compared to the control group (P < 0.05). Larvae fed the diet with 0.30% CCD had significantly higher trypsin activity in pancreatic segments than the control group (4.47 and 3.05 U/mg protein) (P < 0.05). Larvae fed the diet with 0.60% CCD had significantly higher activity of leucine aminopeptidase (7.29 and 4.77 mU/mg protein) and alkaline phosphatase (83.37 and 46.09 U/mg protein) in the brush border membrane than those of the control group (P < 0.05). The intestinal epithelial proliferation- and differentiation-related factors (zo-1, zo-2, and pcna) in larvae fed the diet with 0.30% CCD had higher expression than those of the control group (P < 0.05). When the concentration of wall material reached 0.90%, the larvae had significantly higher superoxide dismutase activity than that of the control group (27.27 and 13.72 U/mg protein) (P < 0.05). Meanwhile, malondialdehyde contents were significantly lower in larvae fed the diet with 0.90% CCD than that of the control group (8.79 and 6.79 nmol/mg protein) (P < 0.05). 0.30%~0.60% CCD significantly increased the activity of total nitric oxide synthase (2.31, 2.60, and 2.05 mU/mg protein) and inducible nitric oxide synthase (1.91, 2.01, and 1.63 mU/mg protein) and had significantly higher transcriptional levels of inflammatory factor genes (il-1β, tnf-α, and il-6) than those of the control group (P < 0.05). The results indicated chitosan-coated microdiet had great potential in feeding large yellow croaker larvae in addition to reducing nutrition loss.
Collapse
Affiliation(s)
- Jiahui Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yuntao Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jianmin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Willer DF, Nicholls RJ, Aldridge DC. Opportunities and challenges for upscaled global bivalve seafood production. NATURE FOOD 2021; 2:935-943. [PMID: 37118255 DOI: 10.1038/s43016-021-00423-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/04/2021] [Indexed: 04/30/2023]
Abstract
Slow growth in the bivalve mariculture sector results from production inefficiencies, food safety concerns, limited availability of convenience products and low consumer demand. Here we assess whether bivalves could meet mass-market seafood demand across the bivalve value chain. We explore how bivalve production could become more efficient, strategies for increasing edible meat yield and how food safety could be improved through food processing technologies and new depuration innovations. Finally, we examine barriers to consumer uptake, such as food allergen prevalence and bivalve preparation challenges, highlighting that appealing and convenient bivalve food products could provide consumers with nutritious and sustainable seafood options-and contribute positively to global food systems.
Collapse
Affiliation(s)
- David F Willer
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
4
|
Willer DF, Aldridge DC. Vitamin Bullets. Microencapsulated Feeds to Fortify Shellfish and Tackle Human Nutrient Deficiencies. Front Nutr 2020; 7:102. [PMID: 32766272 PMCID: PMC7379847 DOI: 10.3389/fnut.2020.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Over two billion people worldwide are micronutrient deficient, with regionally specific deficiencies. Fortification of food with micronutrients has become an industry standard for enhancing public health. Bivalve shellfish (e.g., oysters, clams, and mussels) provide the most sustainable source of animal protein on the planet, and the market is rapidly growing-with production in China increasing 1,000-fold since 1980 to an annual 36 kg capita-1 consumption level. Bivalves are also unique in that micronutrients consumed at their end-life stage will be digested by humans, as humans consume the entire organism including the gut. We have developed a novel microencapsulated vehicle for delivering micronutrients to bivalves, tailored for optimal size, shape, buoyancy, and palatability, demonstrating the potential of fortified bivalves to tackle human nutrient deficiencies. Oysters fed vitamin A and D microcapsules at a 3% initial dosage for just 8 h had elevated tissue vitamin content. A serving of just two such bivalves provides enough vitamin A and D to meet human dietary RDAs. Scale-up of this technology and application to other bivalve species including clams and mussels could provide a low-cost and highly sustainable mechanism to contribute toward tackling nutrient deficiencies globally.
Collapse
Affiliation(s)
- David F Willer
- Aquatic Ecology Group, Department of Zoology, University of Cambridge Conservation Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - David C Aldridge
- Aquatic Ecology Group, Department of Zoology, University of Cambridge Conservation Research Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Microencapsulated algal feeds as a sustainable replacement diet for broodstock in commercial bivalve aquaculture. Sci Rep 2020; 10:12577. [PMID: 32737351 PMCID: PMC7395148 DOI: 10.1038/s41598-020-69645-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
The global bivalve shellfish industry makes up 25% of aquaculture, is worth USD $17.2 billion year−1, and relies upon a supply of juvenile bivalves produced by adult broodstock in hatcheries. Today large quantities of live algae are grown to feed broodstock at $220 kg−1, driving highly unsustainable energy and resource use. New advances in algal and microencapsulation technology provide solutions. We developed microencapsulated Schizochytrium algae diets, which can be produced sustainably at < $2 kg−1 from organic side-streams, and are shelf-stable to minimise waste. Physiological, histological, and cutting-edge metabolomic analyses demonstrate that in commercial settings sustainable microencapsulated diets facilitate improved sexual development and 12 × greater omega-3 levels in oysters relative to conventional live algal diets. Every tonne bivalve protein produced instead of fish spares 9 ha, 67 tonnes CO2, and 40,000 L freshwater. Further research into microencapsulated diets could support bivalve industry expansion, and contribute towards a step-change in sustainable global food production through improved aquaculture practices.
Collapse
|