1
|
Zhang L, Su B, Huang J, Zhang L, Chang Y, Hu G. Fine Mapping of QTLs for Alkaline Tolerance in Crucian Carp ( Carassius auratus) Using Genome-Wide SNP Markers. Genes (Basel) 2024; 15:751. [PMID: 38927687 PMCID: PMC11202869 DOI: 10.3390/genes15060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Crucian carp (Carassius auratus) is widely distributed in the world and has become an economically freshwater fish. The population in Lake Dali Nur can tolerate the extreme alkaline environment with alkalinity over 50 mmol/L (pH 9.6), thus providing a special model for exploring alkali-tolerant molecular markers in an extremely alkaline environment. In this study, we constructed a high-density and high-resolution linkage map with 16,224 SNP markers based on genotyping-by-sequencing (GBS) consisting of 152 progenies and conducted QTL studies for alkali-tolerant traits. The total length of the linkage map was 3918.893 cM, with an average distance of 0.241 cM. Two QTLs for the ammonia-N-tolerant trait were detected on LG27 and LG45. A QTL for the urea-N-tolerant trait was detected on LG27. Interestingly, mapping the two QTLs on LG27 revealed that the mapped genes were both located in the intron of CDC42. GO functional annotation and KEGG enrichment analysis results indicated that the biological functions might be involved in the cell cycle, cellular senescence, MAPK, and Ras signaling pathways. These findings suggest that CDC42 may play an important role in the process of dealing with extremely alkaline environments.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China;
| | - Baofeng Su
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jing Huang
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
| | - Limin Zhang
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
| | - Yumei Chang
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
| | - Guo Hu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China;
| |
Collapse
|
2
|
Zhao XF, Huang J, Li W, Wang SY, Liang LQ, Zhang LM, Liew HJ, Chang YM. Rh proteins and H + transporters involved in ammonia excretion in Amur Ide (Leuciscus waleckii) under high alkali exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116160. [PMID: 38432157 DOI: 10.1016/j.ecoenv.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.
Collapse
Affiliation(s)
- Xue Fei Zhao
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jing Huang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Wen Li
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 2000, China
| | - Shuang Yi Wang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Li Qun Liang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Li Min Zhang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Hon Jung Liew
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti of Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yu Mei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
3
|
Sun G, Zhang H, Yao H, Dai W, Lin Z, Dong Y. Characteristics of glutathione peroxidase gene and its responses to ammonia-N stress in razor clam Sinonovacula constricta. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110752. [PMID: 35513263 DOI: 10.1016/j.cbpb.2022.110752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPX) is a crucial enzyme in the antioxidant defense system. However, the previous studies on the structure and functions of mollusk GPX genes are still very limited. Here, we investigated the GPX gene from Sinonovacula constricta (Sc-GPX), and its expression profiles, protein localization, gene function and association with ammonia tolerance. The full length of sequence of Sc-GPX was 1781 bp, containing an open reading frame (ORF) of 588 bp encoding 195 amino acids. Quantitative expression of seven adult tissues showed that Sc-GPX was most abundant in hepatopancreas, followed by gills. Furthermore, the enzyme activity of Sc-GPX in hepatopancreas increased significantly under different ammonia concentrations (100, 140, and 180 mg/L) (P < 0.01). Further, we explored the mRNA expression level, histological structure and histo-cellular localization in gills and hepatopancreas of Sc-GPX under 140 mg/L ammonia stress. The mRNA expression level in gills and hepatopancreas of Sc-GPX increased significantly (P < 0.05) and immunohistochemistry results suggested that the columnar cells of gills filaments and the endothelial cells of hepatopancreas were the major sites for the action of Sc-GPX protein. In addition, we performed western blotting (WB), RNA interference (RNAi) and single nucleotide polymorphisms (SNPs) in the hepatopancreas of Sc-GPX under ammonia stress (140 mg/L). WB results indicated that the protein expression of Sc-GPX increased significantly (P < 0.01) after ammonia challenge. In addition, expression of Sc-GPX mRNA were significantly downregulated at 24 and 48 h after RNAi (P < 0.01). The association analysis between ammonia-tolerance group and control group identified six SNPs in coding sequence (CDS) of Sc-GPX from 449 individuals. Among them, c.162A > C was missense mutation, which lead to the amino acid change from Lys to Asn. These findings revealed that Sc-GPX may play a critical role in clam ammonia detoxification.
Collapse
Affiliation(s)
- Gaigai Sun
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Huan Zhang
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China.
| | - Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China
| | - Yinghui Dong
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China.
| |
Collapse
|
4
|
Zimmer AM, Wright PA, Wood CM. Ammonia and urea handling by early life stages of fishes. ACTA ACUST UNITED AC 2018; 220:3843-3855. [PMID: 29093184 DOI: 10.1242/jeb.140210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N57
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
5
|
Adlimoghaddam A, O'Donnell MJ, Kormish J, Banh S, Treberg JR, Merz D, Weihrauch D. Ammonia excretion in Caenorhabditis elegans: Physiological and molecular characterization of the rhr-2 knock-out mutant. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:46-54. [DOI: 10.1016/j.cbpa.2016.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 12/16/2022]
|
6
|
Zimmer AM, Wood CM. Physiological and molecular ontogeny of branchial and extra-branchial urea excretion in posthatch rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2016; 310:R305-12. [PMID: 26608657 PMCID: PMC4796753 DOI: 10.1152/ajpregu.00403.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
All teleost fish produce ammonia as a metabolic waste product. In embryos, ammonia excretion is limited by the chorion, and fish must detoxify ammonia by synthesizing urea via the ornithine urea cycle (OUC). Although urea is produced by embryos and larvae, urea excretion (J(urea)) is typically low until yolk sac absorption, increasing thereafter. The aim of this study was to determine the physiological and molecular characteristics of J(urea) by posthatch rainbow trout (Oncorhynchus mykiss). Following hatch, whole body urea concentration decreased over time, while J(urea) increased following yolk sac absorption. From 12 to 40 days posthatch (dph), extra-branchial routes of excretion accounted for the majority of J(urea), while the gills became the dominant site for J(urea) only after 55 dph. This represents the most delayed branchial ontogeny of any process studied to date. Urea transporter (UT) gene expression in the gills and skin increased over development, consistent with increases in branchial and extra-branchial J(urea). Following exposure to 25 mmol/l urea, the accumulation and subsequent elimination of exogenous urea was much greater at 55 dph than 12 dph, consistent with increased UT expression. Notably, UT gene expression in the gills of 55 dph larvae increased in response to high urea. In summary, there is a clear increase in urea transport capacity over posthatch development, despite a decrease in OUC activity.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Adlimoghaddam A, Boeckstaens M, Marini AM, Treberg JR, Brassinga AKC, Weihrauch D. Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1. ACTA ACUST UNITED AC 2015; 218:675-83. [PMID: 25740900 DOI: 10.1242/jeb.111856] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW(-1) day(-1)) and very little urea (0.21±0.004 µmol gFW(-1) day(-1)). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H(+)-ATPase (subunit A) and Na(+)/K(+)-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H(+)-ATPase, carbonic anhydrase, Na(+)/K(+)-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l(-1) NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na(+)/K(+)-ATPase also increased significantly in response to 1 mmol l(-1) NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | - Mélanie Boeckstaens
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Anna-Maria Marini
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Jason R Treberg
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2 Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | | | - Dirk Weihrauch
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| |
Collapse
|
8
|
Kumai Y, Harris J, Al-Rewashdy H, Kwong RWM, Perry SF. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water. Physiol Biochem Zool 2015; 88:137-45. [DOI: 10.1086/679628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Chang YM, Tang R, Dou XJ, Tao R, Sun XW, Liang LQ. Transcriptome and expression profiling analysis of Leuciscus waleckii: an exploration of the alkali-adapted mechanisms of a freshwater teleost. MOLECULAR BIOSYSTEMS 2014; 10:491-504. [PMID: 24382597 DOI: 10.1039/c3mb70318e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strategies by which freshwater teleosts maintain acid-base homeostasis under alkaline stress are attractive and have been explored for a long time. In this study, a cyprinid fish that tolerates extremely alkaline environments (pH 9.6), Leuciscus waleckii, was used as a model to explore the molecular mechanisms of acid-base regulation. Using a lab-controlled alkaline challenge test and 454 sequencing, the transcriptomes of their gills and kidney were profiled and compared. mRNA profiling produced 1 826 022 reads, generated 30 606 contigs with an average length of 1022 bp, of which 19 196 were annotated successfully. Comparative analysis of the expression profiles between alkaline and freshwater L. waleckii habitats revealed approximately 4647 and 7184 genes that were differentially expressed (p < 0.05) in gills and kidney, respectively, of which 2398 and 5127 had more than twofold changes in expression. Gene ontology analysis and KEGG enrichment analysis were conducted. Comprehensive analysis found that genes involved in ion transportation, ammonia transportation, and arachidonic acid metabolism pathways changed dramatically and played important roles in acid-base homeostasis in fish under alkaline stress. These results support the existing hypotheses about candidate genes involved in acid-base regulation under alkaline stress and prompt several new hypotheses. The large transcriptome dataset collected in this study is a useful resource for the exploration of homeostasis modulation in other fish species.
Collapse
Affiliation(s)
- Yu-Mei Chang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China.
| | | | | | | | | | | |
Collapse
|
11
|
Zimmer AM, Brauner CJ, Wood CM. Ammonia transport across the skin of adult rainbow trout (Oncorhynchus mykiss) exposed to high environmental ammonia (HEA). J Comp Physiol B 2013; 184:77-90. [PMID: 24114656 DOI: 10.1007/s00360-013-0784-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/04/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022]
Abstract
Recent molecular evidence points towards a capacity for ammonia transport across the skin of adult rainbow trout. A series of in vivo and in vitro experiments were conducted to understand the role of cutaneous ammonia excretion (J amm) under control conditions and after 12-h pre-exposure to high environmental ammonia (HEA; 2 mmol/l NH4HCO3). Divided chamber experiments with bladder-catheterized, rectally ligated fish under light anesthesia were performed to separate cutaneous J amm from branchial, renal, and intestinal J amm. Under control conditions, cutaneous J amm accounted for 4.5 % of total J amm in vivo. In fish pre-exposed to HEA, plasma total ammonia concentration increased 20-fold to approximately 1,000 μmol/l, branchial J amm increased 1.5- to 2.7-fold, and urinary J amm increased about 7-fold. Urinary J amm still accounted for less than 2 % of total J amm. Cutaneous J amm increased 4-fold yet amounted to only 5.7 % of total J amm in these fish. Genes (Rhcg1, Rhcg2, Rhbg, NHE-2, v-type H(+)-ATPase) known to be involved in ammonia excretion at the gills of trout were all expressed at the mRNA level in the skin, but their expression did not increase with HEA pre-exposure. In vitro analyses using [(14)C] methylamine (MA), an ammonia analog which is transported by Rh proteins, demonstrated that MA permeability in isolated skin sections was higher in HEA pre-exposed fish than in control fish. The addition of basolateral ammonia (1,000 μmol/l) to this system abolished this increase in permeability, suggesting ammonia competition with MA for Rh-mediated transport across the skin of HEA pre-exposed trout; this did not occur in skin sections from control trout. Moreover, in vitro J amm by the skin of fish which had been pre-exposed to HEA was also higher than in control fish in the absence of basolateral ammonia, pointing towards a possible cutaneous ammonia loading in response to HEA. In vitro MA permeability was reduced upon the addition of amiloride (10(-4) mol/l), but not phenamil (10(-5) mol/l) suggesting a role for a Na/H-exchanger (NHE) in cutaneous ammonia transport, as has been previously described in the skin of larval fish. Overall, it appears that under control conditions and in response to HEA pre-exposure, the skin makes only a very minor contribution to total J amm, but the observed increases in cutaneous J amm in vivo and in cutaneous J amm and MA permeability in vitro demonstrate the capacity for ammonia transport in the skin of adult trout. It remains unclear if this capacity may become significant under certain environmental challenges or if it is merely a remnant of cutaneous transport capacity from early life stages in these fish.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada,
| | | | | |
Collapse
|
12
|
Wright PA, Wood CM. Seven things fish know about ammonia and we don't. Respir Physiol Neurobiol 2012; 184:231-40. [PMID: 22910326 DOI: 10.1016/j.resp.2012.07.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 01/01/2023]
Abstract
In this review we pose the following seven questions related to ammonia and fish that represent gaps in our knowledge. 1. How is ammonia excretion linked to sodium uptake in freshwater fish? 2. How much does branchial ammonia excretion in seawater teleosts depend on Rhesus (Rh) glycoprotein-mediated NH(3) diffusion? 3. How do fish maintain ammonia excretion rates if branchial surface area is reduced or compromised? 4. Why does high environmental ammonia change the transepithelial potential across the gills? 5. Does high environmental ammonia increase gill surface area in ammonia tolerant fish but decrease gill surface area in ammonia intolerant fish? 6. How does ammonia contribute to ventilatory control? 7. What do Rh proteins do when they are not transporting ammonia? Mini reviews on each topic, which are able to present only partial answers to each question at present, are followed by further questions and/or suggestions for research approaches targeted to uncover answers.
Collapse
Affiliation(s)
- Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | | |
Collapse
|
13
|
Weihrauch D, Chan AC, Meyer H, Döring C, Sourial MM, O'Donnell MJ. Ammonia excretion in the freshwater planarian Schmidtea mediterranea. J Exp Biol 2012; 215:3242-53. [DOI: 10.1242/jeb.067942] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Summary
In aquatic invertebrates metabolic nitrogenous waste is excreted predominately as ammonia. Very little is known, however, of the underlying mechanisms of ammonia excretion, particularly in freshwater species. Our results indicate that in the non-parasitic freshwater planarian Schmidtea mediterranea ammonia excretion depends on an acidification of the apical unstirred layer of the body surface and consequent ammonia trapping. Buffering of the environment to a pH of 7 or higher decreased excretion rate. Inhibitor experiments suggested further that the excretion mechanism involves the participation of the V-type H+-ATPase and carbonic anhydrase and possibly also the Na+/K+-ATPase and Na+/H+ exchangers (NHEs). Alkalinization (pH 8.5, 2 days) of the environment led to a 1.9-fold increase in body ammonia levels and to a down-regulation of V-ATPase (subunit A) and Rh-protein mRNA. Further, a two day exposure to non-lethal ammonia concentrations (1 mmol L-1) caused a doubling of body ammonia levels and led to an increase in Rh-protein and Na+/K+-ATPase (α-subunit) mRNA expression levels. In-situ hybridization studies indicated a strong mRNA expression of the Rh-protein in the epidermal epithelium. The ammonia excretion mechanism proposed for S. mediterranea reveals striking similarities to the current model suggested to function in gills of freshwater fish.
Collapse
|