1
|
Destoumieux-Garzón D, Canesi L, Oyanedel D, Travers MA, Charrière GM, Pruzzo C, Vezzulli L. Vibrio-bivalve interactions in health and disease. Environ Microbiol 2020; 22:4323-4341. [PMID: 32363732 DOI: 10.1111/1462-2920.15055] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
In the marine environment, bivalve mollusks constitute habitats for bacteria of the Vibrionaceae family. Vibrios belong to the microbiota of healthy oysters and mussels, which have the ability to concentrate bacteria in their tissues and body fluids, including the hemolymph. Remarkably, these important aquaculture species respond differently to infectious diseases. While oysters are the subject of recurrent mass mortalities at different life stages, mussels appear rather resistant to infections. Thus, Vibrio species are associated with the main diseases affecting the worldwide oyster production. Here, we review the current knowledge on Vibrio-bivalve interaction in oysters (Crassostrea sp.) and mussels (Mytilus sp.). We discuss the transient versus stable associations of vibrios with their bivalve hosts as well as technical issues limiting the monitoring of these bacteria in bivalve health and disease. Based on the current knowledge of oyster/mussel immunity and their interactions with Vibrio species pathogenic for oyster, we discuss how differences in immune effectors could contribute to the higher resistance of mussels to infections. Finally, we review the multiple strategies evolved by pathogenic vibrios to circumvent the potent immune defences of bivalves and how key virulence mechanisms could have been positively or negatively selected in the marine environment through interactions with predators.
Collapse
Affiliation(s)
| | - Laura Canesi
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Daniel Oyanedel
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Guillaume M Charrière
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Carla Pruzzo
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Van Nguyen T, Alfaro AC. Applications of flow cytometry in molluscan immunology: Current status and trends. FISH & SHELLFISH IMMUNOLOGY 2019; 94:239-248. [PMID: 31491532 DOI: 10.1016/j.fsi.2019.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Flow cytometry (FCM) is routinely used in fundamental and applied research, clinical practice, and clinical trials. In the last three decades, this technique has also become a routine tool used in immunological studies of molluscs to analyse physical and chemical characteristics of haemocytes. Here, we briefly review the current implementation of FCM in the field of molluscan immunology. These applications cover a diverse range of practices from straightforward total cell counts and cell viability to characterize cell subpopulations, and further extend to analyses of DNA content, phagocytosis, oxidative stress and apoptosis. The challenges and prospects of FCM applications in immunological studies of molluscs are also discussed.
Collapse
Affiliation(s)
- Thao Van Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand.
| |
Collapse
|
3
|
Nguyen TV, Alfaro AC, Merien F, Lulijwa R, Young T. Copper-induced immunomodulation in mussel (Perna canaliculus) haemocytes. Metallomics 2019; 10:965-978. [PMID: 29931012 DOI: 10.1039/c8mt00092a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Copper is a common contaminant in aquatic environments, which may cause physiological dysfunction in marine organisms. However, the toxicity mechanisms of copper in marine bivalves is not fully understood. In this study, we applied an integrated approach that combines flow cytometry and Gas Chromatography-Mass Spectrometry (GC-MS)-based metabolomics to characterize cellular and molecular mechanisms of copper immunotoxicity in New Zealand Greenshell™ mussel (Perna canaliculus) haemolymph. Flow cytometric results showed significant increases in haemocyte mortality, production of reactive oxygen species and apoptosis (via alteration of caspase 3/7 and mitochondrial membrane potential) of haemocytes exposed to increasing total concentrations of Cu2+ (62.5, 125.0 and 187.5 μM) compared to a low Cu2+ concentration (25.0 μM) and control (0.0 μM). In addition to flow cytometric data, our metabolomics results showed alterations of 25 metabolites within the metabolite profile of Cu2+-exposed haemolymph (125 μM) compared to those of control samples. Changes in levels of these metabolites may be considered important signatures of oxidative stress (e.g., glutathione) and apoptosis processes (e.g., alanine, glutamic acid). This study provides insights into the cellular and molecular mechanisms of oxidative stress and apoptosis in marine bivalves and highlights the applicability and reliability of metabolomic techniques for immunotoxicological studies in marine organisms.
Collapse
Affiliation(s)
- Thao V Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | | | | | | | | |
Collapse
|
4
|
do Amaral QDF, Da Rosa E, Wronski JG, Zuravski L, Querol MVM, Dos Anjos B, de Andrade CFF, Machado MM, de Oliveira LFS. Golden mussel (Limnoperna fortunei) as a bioindicator in aquatic environments contaminated with mercury: Cytotoxic and genotoxic aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:343-353. [PMID: 31030141 DOI: 10.1016/j.scitotenv.2019.04.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the Limnoperna fortunei (golden mussel) as a bioindicator of cytotoxicity and genotoxicity in aquatic environments contaminated by heavy metals. Five groups of 50 subjects each were exposed to different concentration of mercuric chloride (HgCl2) (0.001 mg/L, group I; 0.005 mg/L, group II; 0.01 mg/L, group II; 0.02 mg/L, group IV; and 0.1 mg/L, group V). The control group for both chronic and acute treatment did not receive HgCl2. For chronic exposure, the respective groups were placed in aquaria with water contaminated with the above concentrations of HgCl2. For acute exposure, the different concentrations of HgCl2 were injected into the posterior adductor muscle of the individuals belonging to the aforementioned groups. The biological matrix used in the tests was the whole body muscle. Tests (cell viability assay, alkaline comet test; enumeration of micronuclei and necrotic cells, quantification of Hg content in tissues and water, and histopathological analysis of tissues), were carried out on the 7th, 15th, and 30th treatment days or 2 h after injection. Our results demonstrated that L. fortunei showed cell damage in both chronic and acute exposure groups. Significant DNA damage was observed at both the 15th (0.1 mg/L) and 30th (0.01-0.1 mg/L) days of chronic exposure. However, in acute treatment all concentrations induced DNA breaks. The presence of necrosis increased at all concentrations tested for both acute and chronic exposure. Tissue mercury retention on the 15th day was higher than on the 30th day of exposure, while in the same period, there was a decrease in the mercury content of aquarium water. Taking the data together, it is concluded that L. fortunei as a possible bioindicator of the quality of aquatic environments.
Collapse
Affiliation(s)
| | - Emanoeli Da Rosa
- Graduate Program in Pharmaceutical Sciences, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | - Júlia Gabriela Wronski
- Veterinary Pathology Laboratory, HUVET, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | - Luísa Zuravski
- Graduate Program in Biochemistry, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | | | - Bruno Dos Anjos
- Veterinary Pathology Laboratory, HUVET, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | | | - Michel Mansur Machado
- Graduate Program in Pharmaceutical Sciences, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | | |
Collapse
|
5
|
Höher N, Turja R, Brenner M, Nyholm JR, Östin A, Leffler P, Butrimavičienė L, Baršienė J, Halme M, Karjalainen M, Niemikoski H, Vanninen P, Broeg K, Lehtonen KK, Berglind R. Toxic effects of chemical warfare agent mixtures on the mussel Mytilus trossulus in the Baltic Sea: A laboratory exposure study. MARINE ENVIRONMENTAL RESEARCH 2019; 145:112-122. [PMID: 30850117 DOI: 10.1016/j.marenvres.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Baltic blue mussels (Mytilus trossulus) were implemented to assess potential toxicity, health impairments and bioaccumulation of dumped chemical warfare agents on marine benthic organisms. Mussels were collected from a pristine cultivation side and exposed under laboratory conditions to different mixtures of chemical warfare agents (CWAs) related phenyl arsenic compounds, Clark I and Adamsite as well as chloroacetophenone. Using a multi-biomarker approach, mussels were assessed thereafter for effects at different organisational levels ranging from geno-to cytotoxic effects, differences in enzyme kinetics and immunological responses. In an integrated approach, chemical analysis of water and tissue of the test organisms was performed in parallel. The results show clearly that exposed mussels bioaccumulate the oxidized forms of chemical warfare agents Clark I, Adamsite (DAox and DMox) and, to a certain extent, also chloroacetophenone into their tissues. Adverse effects in the test organisms at subcellular and functional level, including cytotoxic, immunotoxic and oxidative stress effects were visible. These acute effects occurred even at the lowest test concentration.
Collapse
Affiliation(s)
- Nicole Höher
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Raisa Turja
- Marine Research Centre, Finnish Environment Institute, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
| | - Matthias Brenner
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | | | - Anders Östin
- Swedish Defence Research Agency, Cementvägen 20, 90182, Umeå, Sweden
| | - Per Leffler
- Swedish Defence Research Agency, Cementvägen 20, 90182, Umeå, Sweden
| | - Laura Butrimavičienė
- Institute of Ecology of Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania
| | - Janina Baršienė
- Institute of Ecology of Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania
| | - Mia Halme
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, Faculty of Science, University of Helsinki, Yliopistonkatu 4, 00014, Helsinki, Finland
| | - Maaret Karjalainen
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, Faculty of Science, University of Helsinki, Yliopistonkatu 4, 00014, Helsinki, Finland
| | - Hanna Niemikoski
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, Faculty of Science, University of Helsinki, Yliopistonkatu 4, 00014, Helsinki, Finland
| | - Paula Vanninen
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, Faculty of Science, University of Helsinki, Yliopistonkatu 4, 00014, Helsinki, Finland
| | - Katja Broeg
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Kari K Lehtonen
- Marine Research Centre, Finnish Environment Institute, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
| | - Rune Berglind
- Swedish Defence Research Agency, Cementvägen 20, 90182, Umeå, Sweden
| |
Collapse
|
6
|
Shi W, Han Y, Guo C, Zhao X, Liu S, Su W, Zha S, Wang Y, Liu G. Immunotoxicity of nanoparticle nTiO 2 to a commercial marine bivalve species, Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2017; 66:300-306. [PMID: 28522418 DOI: 10.1016/j.fsi.2017.05.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
The increasing production and extensive application of nanoparticles (NPs) inevitably leads to increased release of NPs into the marine environment and therefore poses a potential threat to marine organisms, especially the sessile benthic bivalves. However, the impacts of NPs on the immunity of commercial and ecological important bivalve species, Tegillarca granosa, still remain unknown to date. In addition, the molecular mechanism of the immunotoxicity of NPs still remains unclear in marine invertebrates. Therefore, the immunotoxicity of nTiO2 exposure to T. granosa at environmental realistic concentrations was investigated in the present study. Results obtained showed that the total number, phagocytic activity, and red granulocytes ratio of the haemocytes were significantly reduced after 30 days nTiO2 exposures at the concentrations of 10 and 100 μg/L. Furthermore, the expressions of genes encoding Pattern Recognition Receptors (PPRs) and downstream immune-related molecules were significantly down-regulated by nTiO2 exposures, indicating a reduced sensitivity to pathogen challenges. In conclusion, evident immunotoxicity of nTiO2 to T. granosa at environmental realistic concentrations was detected by the present study. In addition, the gene expression analysis suggests that the PRRs (both TLRs and RIG1 investigated) may be the molecules for NPs recognition in marine invertebrates.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Cheng Guo
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xinguo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Saixi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wenhao Su
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shanjie Zha
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yichen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
7
|
Bouallegui Y, Ben Younes R, Turki F, Oueslati R. Impact of exposure time, particle size and uptake pathway on silver nanoparticle effects on circulating immune cells in mytilus galloprovincialis. J Immunotoxicol 2017; 14:116-124. [DOI: 10.1080/1547691x.2017.1335810] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Younes Bouallegui
- Research Unit for Immuno-Microbiology Environmental and Cancerogenesis, Sciences Faculty of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Ridha Ben Younes
- Research Unit for Immuno-Microbiology Environmental and Cancerogenesis, Sciences Faculty of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Faten Turki
- Research Unit for Immuno-Microbiology Environmental and Cancerogenesis, Sciences Faculty of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Ridha Oueslati
- Research Unit for Immuno-Microbiology Environmental and Cancerogenesis, Sciences Faculty of Bizerte, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
8
|
García-Navarro JA, Franco L, Romero D. Differences in the accumulation and tissue distribution of Pb, Cd, and Cu in Mediterranean mussels (Mytilus galloprovincialis) exposed to single, binary, and ternary metal mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6599-6610. [PMID: 28083738 DOI: 10.1007/s11356-016-8349-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
Heavy metals often accumulate in complex mixtures in the environment and are currently a source of concern in many marine ecosystems. Pb, Cd, and Cu are regarded as priority hazardous metals due to their great persistence, bioaccumulation, and toxicity. The aim of the present study was to investigate the tissue accumulation and distribution of these heavy metals in Mediterranean mussels (Mytilus galloprovincialis) exposed to binary and ternary mixtures of metals as opposed to only single exposures. Heavy metal concentrations in the digestive gland, gills, and the other soft tissues were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), and the distribution of each metal was analyzed according to compartments. The concentrations of Pb, Cd, and Cu increased significantly in the group exposed to the ternary mixture; however, there was no common response pattern to exposure in single and binary mixtures. Above all, the metals concentrated in the digestive gland, although the percentages of each element varied between compartments and varied between tissues according to the treatment.
Collapse
Affiliation(s)
- José A García-Navarro
- Área de Toxicología, Facultad de Veterinaria, Campus Regional de Excelencia Internacional Campus Mare Nostrum, Universidad de Murcia, Espinardo, 30071, Murcia, Spain
| | - Lorena Franco
- Área de Toxicología, Facultad de Veterinaria, Campus Regional de Excelencia Internacional Campus Mare Nostrum, Universidad de Murcia, Espinardo, 30071, Murcia, Spain
| | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Campus Regional de Excelencia Internacional Campus Mare Nostrum, Universidad de Murcia, Espinardo, 30071, Murcia, Spain.
| |
Collapse
|
9
|
Höher N, Turja R, Köhler A, Lehtonen KK, Broeg K. Immunological responses in the mussel Mytilus trossulus transplanted at the coastline of the northern Baltic Sea. MARINE ENVIRONMENTAL RESEARCH 2015; 112:113-121. [PMID: 26604022 DOI: 10.1016/j.marenvres.2015.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/26/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
The applicability of immune responses in transplanted Baltic blue mussels (Mytilus trossulus) as biomarkers of immunotoxic effects was studied at differently contaminated locations in the Gulf of Bothnia (northern Baltic Sea). Here, we present a detailed report on the immune responses measured as complementary part of transplantation study by Turja et al. (2014).Various immunological endpoints such as total and differential cell count, morphological alterations,phagocytic activity, and caspase 3/7 activity of mussel haemocytes as well as haemolytic activity of the haemolymph were used. Mussels collected at a reference site at a Finnish coastal site (Hanko, H) were transplanted at the Swedish coast near industrial and urban regions of the cities Sundsvall (S1, S2) and Gävle (G1, G2), respectively. Based on the measured immunological responses, multivariate statistical analysis (PCA biplot) showed a clear separation of the most polluted site S1, indicating immunotoxic impacts of the mixture of contaminants present at this location. Based on these observations and results from Turja et al. (2014), we suggest the implementation of immunotoxic biomarkers for the evaluation of ecosystem health. However, these should be accompanied by complementary endpoints of biological effects encompassing i.e., physiological, antioxidant and bioenergetic markers.
Collapse
|
10
|
Renault T. Immunotoxicological effects of environmental contaminants on marine bivalves. FISH & SHELLFISH IMMUNOLOGY 2015; 46:88-93. [PMID: 25907642 DOI: 10.1016/j.fsi.2015.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/06/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
Coastal areas are complex environments frequently contaminated by numerous pollutants that represent a potential threat to marine organisms, especially bivalves. These pollutants may have major ecological consequences. Although effects of different environmental contaminants on the immune system in marine bivalves have been already reported, a few of reviews summarizes these effects. The main purpose of this chapter relies on summarizing recent body of data on immunotoxicity in bivalves subjected to contaminants. Immune effects of heavy metals, pesticides, HAP, PCB and pharmaceuticals are presented and discussed and a particular section is devoted to nanoparticle effects. A large body of literature is now available on this topic. Finally, the urgent need of a better understanding of complex interactions between contaminants, marine bivalves and infectious diseases is noticed.
Collapse
Affiliation(s)
- T Renault
- Ifremer, Département Ressources Biologique et Envrionnement, Rue de l'Île d'Yeu, 44300 Nantes, France.
| |
Collapse
|