1
|
Moreira Morais J, da Silva Brito R, Saiki P, Cirqueira Dias F, de Oliveira Neto JR, da Cunha LC, Lopes Rocha T, Bailão EFLC. Ecotoxicological assessment of UV filters benzophenone-3 and TiO 2 nanoparticles, isolated and in a mixture, in developing zebrafish ( Danio rerio). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:687-700. [PMID: 38836411 DOI: 10.1080/15287394.2024.2362809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.
Collapse
Affiliation(s)
- Jéssyca Moreira Morais
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, Brazil
| | - Rafaella da Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Federal Institute of Education, Science and Technology of Goiás (IFG), Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Luiz Carlos da Cunha
- Center for Toxic-Pharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
2
|
Yoon Y, Cho M. Detrimental impacts and QSAR baseline toxicity assessment of Japanese medaka embryos exposed to methylparaben and its halogenated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171448. [PMID: 38453088 DOI: 10.1016/j.scitotenv.2024.171448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.
Collapse
Affiliation(s)
- Younggun Yoon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, South Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
3
|
Liu N, Tong L, Li K, Dong Q, Jing J. Copper-Nanoparticle-Induced Neurotoxic Effect and Oxidative Stress in the Early Developmental Stage of Zebrafish ( Danio rerio). Molecules 2024; 29:2414. [PMID: 38893289 PMCID: PMC11174002 DOI: 10.3390/molecules29112414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Copper nanoparticles (CuNPs) are extensively used in electronics, cosmetics, fungicides, and various other fields due to their distinctive qualities. However, this widespread usage can contribute to environmental contamination and heightened health risks for living organisms. Despite their prevalent use, the ecological impacts and biosafety of CuNPs remain inadequately understood. The present study aims to delve into the potential toxic effects of CuNPs on zebrafish (Danio rerio) embryos, focusing on multiple indexes such as embryonic development, neurotoxicity, oxidative stress, and inflammatory response. The results revealed a notable increase in the death rate and deformity rate, alongside varying degrees of decrease in hatching rate and heart rate following CuNPs exposure. Particularly, the frequency of spontaneous tail coiling significantly declined under exposure to CuNPs at concentrations of 500 µg/L. Furthermore, CuNPs exposure induced alterations in the transcriptional expression of GABA signaling pathway-related genes (gabra1, gad, abat, and gat1), indicating potential impacts on GABA synthesis, release, catabolism, recovery, and receptor binding. Additionally, CuNPs triggered oxidative stress, evidenced by disruption in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, along with elevated malondialdehyde (MDA) levels. This oxidative stress subsequently led to a proinflammatory cascade, as demonstrated by the increased transcriptional expression of inflammatory markers (il-1β, tnf-α, il-6, and il-8). Comparative analysis with copper ion (provided as CuCl2) exposure highlighted more significant changes in most indexes with CuCl2, indicating greater toxicity compared to CuNPs at equivalent concentrations. In conclusion, these findings provide valuable insights into the toxic effects of CuNPs on zebrafish embryo development and neurotransmitter conduction. Furthermore, they present technical methodologies for assessing environmental and health risks associated with CuNPs, contributing to a better understanding of their biosafety and ecological impact.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China;
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Huaxin Tonghui Clean Energy Co., Ltd., Taiyuan 030032, China
| | - Luyao Tong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Kunjie Li
- Shanxi Huaxin Gas Energy Institute Co., Ltd., Taiyuan 030032, China
| | - Qiuxia Dong
- Shanxi Huaxin Tonghui Clean Energy Co., Ltd., Taiyuan 030032, China
| | - Jieying Jing
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China;
| |
Collapse
|
4
|
Ortiz-Román MI, Casiano-Muñiz IM, Román-Velázquez FR. Ecotoxicological Effects of TiO 2 P25 Nanoparticles Aqueous Suspensions on Zebrafish ( Danio rerio) Eleutheroembryos. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:373. [PMID: 38392747 PMCID: PMC10893039 DOI: 10.3390/nano14040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Among nanoparticles (NPs), titanium dioxide is one of the most highly manufactured worldwide and widely used in multiple products for both industrial use and personal care products. This increases the probability of release into aquatic environments, potentially affecting these ecosystems. The present study aimed to evaluate TiO2 P25 NP toxicity in zebrafish embryos and eleutheroembryos by evaluating LC50, hatching rate, embryo development, and chemical analysis of the TiO2 concentration accumulated in eleutheroembryo tissues. Zebrafish embryos ~2 h post-fertilization (hpf) were exposed to 75, 100, 150, 200, and 250 mg/L TiO2 P25 NPs for 48 and 96 h. A total of 40-60 embryos were placed in each Petri dish for the respective treatments. Three replicates were used for each treatment group. Ti4+ concentrations were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), and a conversion factor was used to calculate the TiO2 concentrations in the tissues. The highest calculated concentrations of TiO2 in zebrafish larvae were 1.0199 mg/L after 48 h and 1.2679 mg/L after 96 h of exposure. The toxicological results indicated that these NPs did not have a significant effect on the mortality and hatching of zebrafish embryos but did have an effect on their development. LC20 and LC30 were determined experimentally, and LC50 and LC80 were estimated using four different methods. Up to 11% of embryos also presented physical malformations. These effects can be detrimental to a species and affect ecosystems. Physical malformations were observed in all treatments, indicating teratogenic effects.
Collapse
Affiliation(s)
- Melissa I. Ortiz-Román
- Department of Chemistry, University of Puerto Rico, Mayaguez Campus, Mayaguez, PR 00681, USA;
| | | | | |
Collapse
|
5
|
Trela-Makowej A, Orzechowska A, Szymańska R. Less is more: The hormetic effect of titanium dioxide nanoparticles on plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168669. [PMID: 37989395 DOI: 10.1016/j.scitotenv.2023.168669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Titanium dioxide nanoparticles have attracted considerable attention due to their extensive applications; however, their multifaceted influence on plant physiology and the broader environment remains a complex subject. This review systematically synthesizes recent studies on the hormetic effects of TiO2 nanoparticles on plants - a phenomenon characterized by dual dose-response behavior that impacts various plant functions. It provides crucial insights into the molecular mechanisms underlying these hormetic effects, encompassing their effects on photosynthesis, oxidative stress response and gene regulation. The significance of this article consists in its emphasis on the necessity to establish clear regulatory frameworks and promote international collaboration to standardize the responsible adoption of nano-TiO2 technology within the agricultural sector. The findings are presented with the intention of stimulating interdisciplinary research and serving as an inspiration for further exploration and investigation within this vital and continually evolving field.
Collapse
Affiliation(s)
- Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Aleksandra Orzechowska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland.
| |
Collapse
|
6
|
Tullio SCMC, McCoy K, Chalcraft DR. Chronic toxicity and liver histopathology of mosquito fish (Gambusia holbrooki) exposed to natural and modified nanoclays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168060. [PMID: 37918747 DOI: 10.1016/j.scitotenv.2023.168060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
Nanoclays are found in the air, water, and soil, and modified nanoclays are being developed and used in several consumer products. For example, modified nanoclays are used to remove pollutants from wastewater. Ironically, however, nanoclays are now considered emerging contaminants. Indeed, release of modified nanoclays in aquatic systems, even as remediating agents, could adversely affect associated wildlife. However, aquatic organisms have interacted with natural nanoclays for millennia, and it is unclear if modified nanoclays induce stronger effects than the nanoclays that occur naturally. The concentrations over which nanoclays occur and illicit negative effects are not well studied. This study investigated the dose response of a natural nanoclay (Na+montmorillonite) relative to two modified nanoclays (Cloisite®30B and Novaclay™) on survival, body condition, and liver pathomorphology of Gambusia holbrooki after 14 days of exposure. Although none of the nanoclays affected survival and body condition of G. holbrooki over 14 days, each nanoclay induced histopathological changes in liver tissues at very low concentrations (LOAEL: 0.01 mgL-1). The effects of nanoclays on hepatic cell circulatory (blood cell aggregation with increased number of Kupffer cells and hemosiderin deposits), regressive (hepatocyte vacuolization), and degenerative (cell death) changes of mosquito fish varied among nanoclay types. Novaclay™ at low concentrations caused circulatory changes on hepatic tissues of G. holbrooki, whereas both natural nanoclays and Cloisite®30B showed little effect on circulatory endpoints. In contrast, all of the nanoclays induced regressive and degenerative changes on liver tissues of mosquito fish across all concentrations tested. This study clearly reveals that natural and modified nanoclays have important health implications for fish and other aquatic organisms. Consequently, the widespread use of modified nanoclays in several applications and increased release of natural nanoclays through erosion or other processes needs to be evaluated in more detail especially in the context of their safety for aquatic systems.
Collapse
Affiliation(s)
- S C M C Tullio
- Department of Biology, East Carolina University, 1000 E 5th Street, N108 Howell Science Building, Greenville, NC 27834, USA.
| | - K McCoy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US1 North, Fort Pierce, FL 34946, USA
| | - D R Chalcraft
- Department of Biology, East Carolina University, 1000 E 5th Street, N108 Howell Science Building, Greenville, NC 27834, USA
| |
Collapse
|
7
|
Pecoraro R, Scalisi EM, Indelicato S, Contino M, Coco G, Stancanelli I, Capparucci F, Fiorenza R, Brundo MV. Toxicity of Titanium Dioxide-Cerium Oxide Nanocomposites to Zebrafish Embryos: A Preliminary Evaluation. TOXICS 2023; 11:994. [PMID: 38133395 PMCID: PMC10747588 DOI: 10.3390/toxics11120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The widespread use of metal nanoparticles in different fields has raised many doubts regarding their possible toxicity to living organisms and the accumulation and discharge of metals in fish species. Among these nanoparticles, titanium dioxide (TiO2) and cerium oxide (CeO2) nanoparticles have mainly been employed in photocatalysis and water depuration. The aim of this research was to evaluate the potential toxic effects, after a co-exposure of TiO2-3%CeO2 nanoparticles, on zebrafish development, using an acute toxicity test. Increasing concentrations of TiO2-3%CeO2 nanoparticles were used (0.1-1-10-20 mg/L). The heartbeat rate was assessed using DanioscopeTM software (version 1.2) (Noldus, Leesburg, VA, USA), and the responses to two biomarkers of exposure (Heat shock proteins-70 and Metallothioneins) were evaluated through immunofluorescence. Our results showed that the co-exposure to TiO2-3%CeO2 nanoparticles did not affect the embryos' development compared to the control group; a significant difference (p < 0.05) at 48 hpf heartbeat for the 1, 10, and 20 mg/L groups was found compared to the unexposed group. A statistically significant response (p < 0.05) to Heat shock proteins-70 (Hsp70) was shown for the 0.1 and 1 mg/L groups, while no positivity was observed in all the exposed groups for Metallothioneins (MTs). These results suggest that TiO2-3%CeO2 nanocomposites do not induce developmental toxicity; instead, when considered separately, TiO2 and CeO2 NPs are harmful to zebrafish embryos, as previously shown.
Collapse
Affiliation(s)
- Roberta Pecoraro
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, 95124 Catania, Italy; (E.M.S.); (S.I.); (M.C.); (G.C.); (I.S.); (M.V.B.)
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, 95124 Catania, Italy; (E.M.S.); (S.I.); (M.C.); (G.C.); (I.S.); (M.V.B.)
| | - Stefania Indelicato
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, 95124 Catania, Italy; (E.M.S.); (S.I.); (M.C.); (G.C.); (I.S.); (M.V.B.)
| | - Martina Contino
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, 95124 Catania, Italy; (E.M.S.); (S.I.); (M.C.); (G.C.); (I.S.); (M.V.B.)
| | - Giuliana Coco
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, 95124 Catania, Italy; (E.M.S.); (S.I.); (M.C.); (G.C.); (I.S.); (M.V.B.)
| | - Ilenia Stancanelli
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, 95124 Catania, Italy; (E.M.S.); (S.I.); (M.C.); (G.C.); (I.S.); (M.V.B.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| | - Roberto Fiorenza
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, 95124 Catania, Italy; (E.M.S.); (S.I.); (M.C.); (G.C.); (I.S.); (M.V.B.)
| |
Collapse
|
8
|
Gonçalves LC, Roberto MM, Peixoto PVL, Viriato C, da Silva AFC, de Oliveira VJA, Nardi MCC, Pereira LC, de Angelis DDF, Marin-Morales MA. Toxicity of Beauty Salon Effluents Contaminated with Hair Dye on Aquatic Organisms. TOXICS 2023; 11:911. [PMID: 37999563 PMCID: PMC10674561 DOI: 10.3390/toxics11110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
Cosmetic residues have been found in water resources, especially trace elements of precursors, couplers, and pigments of hair dyes, which are indiscriminately disposed of in the sewage system. These contaminants are persistent, bioactive, and bioaccumulative, and may pose risks to living beings. Thus, the present study assessed the ecotoxicity of two types of effluents generated in beauty salons after the hair dyeing process. The toxicity of effluent derived from capillary washing with water, shampoo, and conditioner (complete effluent-CE) and effluent not associated with these products (dye effluent-DE) was evaluated by tests carried out with the aquatic organisms Artemia salina, Daphnia similis, and Danio rerio. The bioindicators were exposed to pure samples and different dilutions of both effluents. The results showed toxicity in D. similis (CE50 of 3.43% and 0.54% for CE and DE, respectively); A. salina (LC50 8.327% and 3.874% for CE and DE, respectively); and D. rerio (LC50 of 4.25-4.59% and 7.33-8.18% for CE and DE, respectively). Given these results, we can infer that hair dyes, even at low concentrations, have a high toxic potential for aquatic biota, as they induced deleterious effects in all tested bioindicators.
Collapse
Affiliation(s)
- Letícia C. Gonçalves
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
- University Center of Hermínio Ometto Foundation (FHO), Av. Dr. Maximiliano Baruto, 500, Jardim Universitário, Araras 13607-339, SP, Brazil;
| | - Matheus M. Roberto
- University Center of Hermínio Ometto Foundation (FHO), Av. Dr. Maximiliano Baruto, 500, Jardim Universitário, Araras 13607-339, SP, Brazil;
| | - Paloma V. L. Peixoto
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil; (P.V.L.P.); (C.V.); (L.C.P.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil
| | - Cristina Viriato
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil; (P.V.L.P.); (C.V.); (L.C.P.)
- Department of Bioprocesses and Biotechnology, São Paulo State University (Unesp), R. Dr. José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil
| | - Adriana F. C. da Silva
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| | - Valdenilson J. A. de Oliveira
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| | - Mariza C. C. Nardi
- University Center of Hermínio Ometto Foundation (FHO), Av. Dr. Maximiliano Baruto, 500, Jardim Universitário, Araras 13607-339, SP, Brazil;
| | - Lilian C. Pereira
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil; (P.V.L.P.); (C.V.); (L.C.P.)
- School of Agriculture (FCA), São Paulo State University (Unesp), Av. Universitária, 3780, Fazenda Experimental Lageado, Botucatu 18610-034, SP, Brazil
| | - Dejanira de F. de Angelis
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| | - Maria A. Marin-Morales
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| |
Collapse
|
9
|
Pavan C, Santalucia R, Escolano-Casado G, Ugliengo P, Mino L, Turci F. Physico-Chemical Approaches to Investigate Surface Hydroxyls as Determinants of Molecular Initiating Events in Oxide Particle Toxicity. Int J Mol Sci 2023; 24:11482. [PMID: 37511241 PMCID: PMC10380507 DOI: 10.3390/ijms241411482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS). The importance of modelling techniques (MD, DFT) for an atomistic description of the interactions between membranes/proteins and OxPs surfaces is also discussed. From this background, we distilled a new approach methodology (NAM) based on the combination of IR spectroscopy and bioanalytical assays to investigate the molecular interactions of OxPs with biomolecules and membranes. This NAM has been already successfully applied to SiO2 particles to identify the OH patterns responsible for the OxPs' toxicity and can be conceivably extended to other surface-hydroxylated oxides.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Rosangela Santalucia
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Piero Ugliengo
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Francesco Turci
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| |
Collapse
|
10
|
Costa DA, Oliveira-Filho EC. Effects of Commercial Sunscreens on Survival, Reproduction and Embryonic Development of the Aquatic Snail Biomphalaria glabrata (SAY, 1818). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:2. [PMID: 37338674 DOI: 10.1007/s00128-023-03756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Over the past few years, there has been a significant increase in the use of sunscreens. Consequently, the occurrence in aquatic environments of ultraviolet filters has also increased. The present study aims to evaluate the toxicity of two commercial sunscreens to the aquatic snail Biomphalaria glabrata. Acute assays were performed with adult snails exposed to solutions of the two products in synthetic soft water. Reproduction and development assays were carried out, involving individual adult and egg masses exposure to assess fertility and embryonic development. Sunscreen A showed a LC50-96 h of 6.8 g/L and reduction in number of eggs and egg masses per individual in the concentration of 0.3 g/L. Sunscreen B presented higher malformation rates in 0.4 g/L with 63% of malformed embryos. Results indicate that the formulation used in sunscreens is an important factor in aquatic toxicity and needs to be evaluated before the final product is commercialized.
Collapse
Affiliation(s)
- Danilo Aparecido Costa
- Universidade de Brasilia, Campus de Planaltina (FUP) Planaltina, Distrito Federal, 73, 345-010, Brasilia, Brazil
| | - Eduardo Cyrino Oliveira-Filho
- Embrapa Cerrados (Empresa Brasileira de Pesquisa Agropecuária), Rodovia BR-020, km 18, Distrito Federal, 73310-970, Planaltina, Brazil.
| |
Collapse
|
11
|
Kuang Y, Guo H, Ouyang K, Wang X, Li D, Li L. Nano-TiO 2 aggravates immunotoxic effects of chronic ammonia stress in zebrafish (Danio rerio) intestine. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109548. [PMID: 36626958 DOI: 10.1016/j.cbpc.2023.109548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Ammonia and nano-TiO2 are commonly found pollutants in aquatic environments around the world. NH3 has been proved to be absorbed on nano-TiO2 surface, therefore, the biosafety and environmental effects of ammonia and co-occurring nano-TiO2 in aquatic environments has increased considerably in recent years. To explore the potential interactive effects and mechanisms of ammonia and nano-TiO2 on the intestinal immune system, three-month-old female zebrafish were exposed to total ammonia nitrogen (TAN; 0, 3, 30 mg/L) with or without nano-TiO2 (1 mg/L) for 60 d. The results showed that intestinal ammonia levels increased with the increase of TAN exposure concentration in the presence of nano-TiO2. Histopathological analysis demonstrated that both TAN and nano-TiO2 caused cell vacuolation, lymphocyte infiltration and goblet cells hyperplasia in the intestine mucosa. Our study also found that the contents and gene expression levels of lysozyme (lys) and β-defensin (def-β) in the intestine of zebrafish exposed to TAN alone or combined with nano-TiO2 were significantly reduced, suggesting a decline in the intestinal innate immunity of fish. A broad upregulation of TLRs-related genes indicated that TAN and nano-TiO2 could activate TLR4/5-mediated MyD88-dependent pathway, and eventually induce intestinal inflammation. It should be noted that TAN combined with nano-TiO2 had more significant inhibitory effects on the intestinal structure and innate immune responses than TAN alone. Current data suggested that ammonia and nano-TiO2 had a synergistic inhibitory effect on intestinal mucosal immunity, and their associated health risk to aquatic animals and the water ecosystem should not be underestimated.
Collapse
Affiliation(s)
- Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
12
|
Guo Z, Zuo J, Liu X, Gong J, Ma K, Feng J, Li J, Zhang S, Qiu G. Effects of titanium dioxide (TiO 2)/activated carbon (AC) nanoparticle on the growth and immunity of the giant freshwater prawn, Macrobrachium rosenbergii: potential toxicological risks to the aquatic crustaceans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33322-33333. [PMID: 36478551 DOI: 10.1007/s11356-022-24555-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Due to their unique physicochemical characteristics, nanomaterials exhibit many excellent properties and functions, leading to their applications in numerous fields. The large-scale production and widespread application of nanomaterials have inevitably resulted in their release into the environment, especially the water environment. Several studies have confirmed that exposure to nanomaterials can be toxic to aquatic organisms. However, few studies have focused on the effects of nanomaterial exposure on growth and immunity in crustaceans. In the present study, juvenile Macrobrachium rosenbergii were exposed to different concentrations of titanium dioxide (TiO2)/activated carbon (AC) composite nanomaterial (0.1 and 0.5 mg/L) for 45 days. The effects of nanoparticle exposure on digestion and antioxidant-related enzyme activities, as well as the expression of growth and immunity-related genes and signaling pathway, were evaluated. Our results show that in response to low concentration of TiO2/AC nanoparticle (0.1 mg/L), most of the enzyme activities related to digestion and antioxidation (TPS, LPS, AMS, SOD, and CAT) were diminished. On the contrary, the GSH-Px activity increased under the 0.1 mg/L group of TiO2/AC nanoparticle concentration. Additionally, the level of digestive and antioxidant enzyme activities we detected was increased when exposed to 0.5 mg/L TiO2/AC nanoparticle. By comparison to the expression level of growth-related genes in the control group, MSTN, CaBP, E75, Raptor, EcR, and EGF were significantly inhibited at 0.1 and 0.5 mg/L concentrations of TiO2/AC nanoparticle, whereas the expression level of genes (TLR, JAK, STAT, PPAF, ACP, and AKP) related to immunity was increased when exposed to different concentrations of TiO2/AC nanoparticle. Compared with the control group (0 mg/L concentration), 5166 DEGs were identified in the TiO2/AC nanoparticle group, and a large number of DEGs were involved in molting, energy metabolism, stress tolerance, and germ cell development. Moreover, KEGG analysis revealed that many DEGs were assigned into signaling pathways related to metabolic growth and immune stress. These results showed that exposure to TiO2/AC nanoparticle will result in the changes of enzyme activity and routine mRNA expression, suggesting that TiO2/AC nanoparticle which existed in aquatic environment might affect the physiology of M. rosenbergii. This study will provide significant information for the evaluation of nanomaterial toxicity on aquatic crustaceans.
Collapse
Affiliation(s)
- Ziqi Guo
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Jiabao Zuo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, People's Republic of China
| | - Xue Liu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Jinhua Gong
- Dinghe Aquatic Science and Technology Development Co., LTD, 225300, Taizhou, People's Republic of China
| | - Keyi Ma
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New Area, 201306, Shanghai, People's Republic of China.
| | - Jianbin Feng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Jiale Li
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, People's Republic of China
| | - Gaofeng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Guo Z, Zuo J, Feng J, Li J, Zhang S, Ma K. Impact of Titanium Dioxide-Graphene Oxide (TiO 2-GO) Composite Nanoparticle on the Juveniles of the Giant River Prawn, Macrobrachium rosenbergii: Physio-Biochemistry and Transcriptional Response. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:45-56. [PMID: 36527515 DOI: 10.1007/s10126-022-10180-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials are used in many fields, resulting in inevitably releasing into the aquatic environment. The presence of nanomaterials, including TiO2-GO in the aquatic environment, can be toxic to aquatic organisms. However, few studies have focused on the effects of TiO2-GO composite nanoparticle on crustaceans. In the present study, the giant river prawn Macrobrachium rosenbergii juveniles were exposed to two concentrations of TiO2-GO composite nanoparticle (0.1 and 0.5 mg/L). The effects of TiO2-GO composite exposure on activities of digestive and antioxidant-related enzymes and expressions of growth and immune-related genes at the transcriptome were studied. The results showed that the survival rate and growth performance were not negatively affected by TiO2-GO composite at the two exposure levels. Nevertheless, exposure to TiO2-GO composite causes an effect on the activities of digestive and antioxidant enzymes in the juvenile prawns. The enzyme activities of CAT, SOD, GSH-Px, AMS, TPS, and LPS in the 0.1 mg/L TiO2-GO composite experimental group were markedly reduced than those in the control group. Additionally, the expression level of genes involved in growth and immunity was significantly affected by TiO2-GO composite. After exposure to the 0.1 mg/L TiO2-GO composite, the mRNA expression level of MSTN was significantly increased, but the level of EcR, Raptor, and CaBP was significantly decreased. However, the mRNA levels of the CTL, TLR, JAK, and STAT were significantly increased after exposure to the 0.5 mg/L concentration of TiO2-GO composite. Furthermore, to understand the molecular mechanism of M. rosenbergii under TiO2-GO composite exposure, RNA-Seq was employed to analyze the changes of the muscle and hepatopancreas transcriptome. Compared with the control group, we identified 5166 and 4784 differentially expressed genes (DEGs) in the muscle and hepatopancreas, respectively (p < 0.05). Based on gene ontology and KEGG analysis, significant differences were observed in the DEGs involved in activity and binding, metabolism, immune response, and environmental information processing. These results showed that exposure to TiO2-GO composite nanoparticle led to the changes of enzyme activity and gene expression, suggesting that TiO2-GO composite existing in aquatic environments would disrupt the physiology of M. rosenbergii. This study will serve as a foundation for subsequent research into the evaluation of nanomaterial toxicity on crustacean species.
Collapse
Affiliation(s)
- Ziqi Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, People's Republic of China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiabao Zuo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Jianbin Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, People's Republic of China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, People's Republic of China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Keyi Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, People's Republic of China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- College of Fisheries and Life Science, Pudong New Area, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
14
|
Yang L, Xu J, Gao H, Dai S, Liu L, Xi Y, Zhang G, Wen X. Toxicity enhancement of nano titanium dioxide to Brachionus calyciflorus (Rotifera) under simulated sunlight and the underlying mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114556. [PMID: 36669281 DOI: 10.1016/j.ecoenv.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Nano titanium dioxide (nTiO2) generally shows low toxicity to organisms under light-emitting diode (LED) light. However, nTiO2 can induce production of reactive oxygen species (ROS) under ultraviolet (UV) light due to its photocatalytic activity. Therefore, it is reasonable to expect the enhancement of nTiO2 toxicity under sunlight. To test this hypothesis, we compared the toxicity of nTiO2 to Brachionus calyciflorus under simulated sunlight and LED light. The results showed that the 24 h-LC50 of nTiO2 to B. calyciflorus under LED light and simulated sunlight were 24.32 (95% CI: 14.54-46.81 mg/L) and 10.44 mg/L (95% CI: 6.74-17.09 mg/L), respectively. Compared with the blank control, treatments with nTiO2 significantly affected life-table demographic parameters, population growth parameters and swimming linear speed under both simulated sunlight and LED light. However, life expectancy, net reproductive rate, average lifespan, maximal population density, and swimming linear speed in the treatments of nTiO2 at 0.1, 1, and/or 10 mg/L showed markedly lower values under simulated sunlight than those under LED light, suggesting that simulated sunlight could enhance the toxicity of nTiO2. In addition, markedly higher catalase (CAT) activity and malondialdehyde (MDA) content but lower glutathione (GSH) content were observed in treatment with 10 mg/L nTiO2 under simulated sunlight than that under LED light. The results showed that compared with LED light, simulated sunlight significantly induced more oxidative stress in the presence of nTiO2, and the ROS production was mainly localized to the corona and digestive tract of rotifers by confocal laser scanning microscope. Exposure to 10-50 μM of vitamin C, that is an effective ROS scavenger, could rescue the swimming linear speed of rotifers to the normal level in the blank control. These results suggested that oxidative damages on cell membrane might be the vital mechanism underlying the toxicity enhancement of nTiO2 to rotifers under simulated sunlight. Thus, the previous publications under LED light may underestimate the real toxicity and environmental risk of nTiO2 in natural conditions.
Collapse
Affiliation(s)
- Liu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Jinqian Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Huahua Gao
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Shiniu Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Lingli Liu
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Gen Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Xinli Wen
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China.
| |
Collapse
|
15
|
Korez Š, Gutow L, Saborowski R. Fishing in troubled waters: Limited stress response to natural and synthetic microparticles in brown shrimp (Crangon crangon). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119023. [PMID: 35189296 DOI: 10.1016/j.envpol.2022.119023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Marine invertebrates inhabiting estuaries and coastal areas are exposed to natural suspended particulate matter (SPM) like clay or diatom shells but also to anthropogenic particles like microplastics. SPM concentrations may reach 1 g per liter and more, comprising hundreds of millions of items in the size range of less than 100 μm. Suspension feeders and deposit feeders involuntarily ingest these particles along with their food. We investigated whether natural and anthropogenic microparticles at concentrations of 20 mg L-1, which correspond to natural environmental SPM concentrations in coastal marine waters, are ingested by the brown shrimp Crangon crangon and whether these particles induce an oxidative stress response in digestive gland tissue. Shrimp were exposed to clay, silica, TiO2, polyvinyl chloride (PVC), or polylactide microplastics (PLA) for 6, 12, 24, and 48 h, respectively. The activities of the anti-oxidative enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were measured. All five particle types were ingested by the shrimp along with food. The presence of the particles in the shrimp stomach was verified by scanning electron microscopy. The activities of the anti-oxidative enzymes did not vary between animals exposed to different types of microparticles and control animals that did not receive particles. The temporal activity differed between the three enzymes. The lack of a specific biochemical response may reflect an adaptation of C. crangon to life in an environment where frequent ingestion of non-digestible microparticles is unavoidable and continuous maintenance of inducible biochemical defense would be energetically costly. Habitat characteristics as well as natural feeding habits may be important factors to consider in the interpretation of hazard and species-specific risk assessment.
Collapse
Affiliation(s)
- Špela Korez
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Lars Gutow
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| |
Collapse
|
16
|
Malatjie TS, Botha TL, Tekere M, Kuvarega AT, Nkambule TTI, Mamba BB, Msagati TAM. Toxicity assessment of TiO 2-conjugated Carbon-based nanohybrid material on a freshwater bioindicator cladoceran, Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106176. [PMID: 35487150 DOI: 10.1016/j.aquatox.2022.106176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
The application of nanocomposite materials fabricated from titanium dioxide nanoparticles (TiO2 NPs) and different carbon (C) allotropes have gained popularity in water treatment applications due to their synergistic properties. Studies to date have focused on simple forms of nanomaterials (NMs), however, with the technology development, there is a dramatic increase in production and application of these complex NMs which could result in toxicological impacts on organisms when released into aquatic environments. This raises serious concerns about their safety and the need to ascertain their potential adverse effects on aquatic organisms. While conjugated TiO2 NPs/carbon-based nanohybrids (TiO2/C-NHs) may exhibit enhanced photocatalytic activity, there is no research in the scientific community regarding their toxicological effects on D. magna, which are indicators of freshwater pollution. In this study, two under-represented TiO2/C-NHs (i.e., TiO2- conjugated carbon nanofiber (CNF), and TiO2-conjugated multi-walled carbon nanotube (CNT)) were investigated for their toxic effects on D. magna, through a series of acute toxicity tests with a set of sublethal biochemical biomarkers of oxidative stress. The lethal toxicity and oxidative stress formation of TiO2/C-NHs over 48 h revealed a concentration-dependant increase in D. magna mortality. The primary mechanism identified was the generation of ROS, which was in line with toxicity results. Light microscopy and CytoViva® images visualized D. magna interaction with the NPs, which accumulated and appeared as dark materials in the lines of the gut tract. The collective results indicate that TiO2/C-NHs have the potential to cause an effect on freshwater organisms when released into the environment. However, the relevance of TiO2/C-NHs effects needs further chronic toxicity studies since they show promise to be used in nano-bioremediation materials to treat wastewaters.
Collapse
Affiliation(s)
- Terrence S Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa.
| | - Tarryn L Botha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture & Environmental Sciences, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Alex T Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa.
| |
Collapse
|
17
|
Sheikholeslami-Farahani F, Mohammadi M, Ghambarian M, Hossaini Z. Green Synthesis and Biological Activity Investigation of New Thiazinotriazines: A Combined Experimental and Theoretical Investigation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2078378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Marziyeh Mohammadi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mehdi Ghambarian
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | | |
Collapse
|
18
|
Zhang X, Zhang J, Wang Q, Ghimire S, Mei L, Wu C. Effects of Particle Size and Surface Charge on Mutagenicity and Chicken Embryonic Toxicity of New Silver Nanoclusters. ACS OMEGA 2022; 7:17703-17712. [PMID: 35664612 PMCID: PMC9161408 DOI: 10.1021/acsomega.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Though there are many toxicological studies on metal nanoparticles (NPs), it remains difficult to explain discrepancies observed between studies, largely due to the lack of positive controls and disconnection between physicochemical properties of nanomaterials with their toxicities at feasible exposures in a specified test system. In this study, we investigated effects of particle size and surface charge on in vitro mutagenic response and in vivo embryonic toxicity for newly synthesized silver nanoclusters (AgNCs) at human or environmental relevant exposure and compared the new findings with one of the most common nanoscale particles, titanium dioxide NPs (TiO2 NPs as a positive control). We hypothesized that the interaction of the test system and physicochemical properties of nanomaterials are critical in determining their toxicities at concentrations relevant with human or environmental exposures. We assessed the mutagenicity of the AgNCs (around 2 nm) and two sizes of TiO2 NPs (i.e., small: 5-15 nm, big: 30-50 nm) using a Salmonella reverse mutation assay (Ames test). The smallest size of AgNCs showed the highest mutagenic activity with the Salmonella strain TA100 in the absence and presence of the S9 mixture, because the AgNCs maintained the nano-size scale in the Ames test, compared with two other NPs. For TiO2 NPs, the size effect was interfered by the agglomeration of TiO2 NPs in media and the generation of oxidative stress from the NPs. The embryonic toxicity and the liver oxidative stress were evaluated using a chicken embryo model at three doses (0.03, 0.33, and 3.3 μg/g egg), with adverse effects on chicken embryonic development in both sizes of TiO2 NPs. The non-monotonic response was determined for developmental toxicity for the tested NPs. Our data on AgNCs was different from previous findings on AgNPs. The chicken embryo results showed some size dependency of nanomaterials, but they were more well correlated with lipid peroxidation (malondialdehyde) in chicken fetal livers. A different level of agglomeration of TiO2 NPs and AgNCs was observed in the assay media of Ames and chicken embryo tests. These results suggest that the test nanotoxicities are greatly impacted by the experimental conditions and the nanoparticle's size and surface charge.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Jinglin Zhang
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Qin Wang
- Department
of Nutrition and Food Science, University
of Maryland, College Park, Maryland 20740, United States
| | - Shweta Ghimire
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Lei Mei
- Department
of Nutrition and Food Science, University
of Maryland, College Park, Maryland 20740, United States
| | - Changqing Wu
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
Thirumurthi NA, Raghunath A, Balasubramanian S, Perumal E. Evaluation of Maghemite Nanoparticles-Induced Developmental Toxicity and Oxidative Stress in Zebrafish Embryos/Larvae. Biol Trace Elem Res 2022; 200:2349-2364. [PMID: 34297274 DOI: 10.1007/s12011-021-02830-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
Maghemite nanoparticles ([Formula: see text] NPs) have a wide array of applications in various industries including biomedical field. There is an absence of legislation globally for the regulation of the production, use, and disposal of such NPs as they are eventually dumped into the environment where these NPs might affect the living systems. This study evaluates the effect of the [Formula: see text] NP-induced developmental toxicity in zebrafish embryos/larvae. The commercially available Fe2O3 NPs were purchased, and zebrafish embryos toxicity test was done by exposing embryos to various concentrations of [Formula: see text] NPs at 1 hpf and analyzed at 96 hpf. Based on the LC50 value (60.17 ppm), the sub-lethal concentrations of 40 and 60 ppm were used for further experiments. Hatching, lethality, developmental malformations, and heartbeat rate were measured in the control and treated embryos/larvae. The ionic Fe content in the media, and the larvae was quantified using ICP-MS and AAS. The biomolecular alterations in the control and treated groups were analyzed using FT-IR. The Fe ions present in the larvae were visualized using SEM-EDXS. In situ detection of AChE and apoptotic bodies was done using staining techniques. Biochemical markers (total protein content, AChE, and Na+ K+-ATPase) along with oxidants and antioxidants were assessed. A significant decrease in the heartbeat rate and hatching delay was observed in the treated groups affecting the developmental processes. Teratogenic analysis showed increased developmental deformity incidence in treated groups in a dose-dependent manner. The accumulation of Fe was evidenced from the ICP-MS, AAS, and SEM-EDXS. Alterations in AChE and Na+ K+-ATPase activity were observed along with an increment in the oxidants level with a concomitant decrease in antioxidant enzymes. These results show [Formula: see text] NP exposure leads to developmental malformation and results in the alteration of redox homeostasis.
Collapse
Affiliation(s)
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
20
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
21
|
Guidi P, Bernardeschi M, Scarcelli V, Lucchesi P, Palumbo M, Corsi I, Frenzilli G. Nanoparticled Titanium Dioxide to Remediate Crude Oil Exposure. An In Vivo Approach in Dicentrarchus labrax. TOXICS 2022; 10:111. [PMID: 35324736 PMCID: PMC8952326 DOI: 10.3390/toxics10030111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022]
Abstract
The contamination of marine water bodies with petroleum hydrocarbons represents a threat to ecosystems and human health. In addition to the surface slick of crude oil, the water-soluble fraction of petroleum is responsible for the induction of severe toxic effects at different cellular and molecular levels. Some petroleum-derived hydrocarbons are classified as carcinogenic and mutagenic contaminants; therefore, the oil spill into the marine environment can have long term consequences to the biota. Therefore, new tools able to remediate crude oil water accommodation fraction pollution in marine water are highly recommended. Nanomaterials were recently proposed in environmental remediation processes. In the present in vivo study, the efficacy of pure anatase titanium nanoparticles (n-TiO2) was tested on Dicentrarchus labrax exposed to the accommodated fraction of crude oil. It was found that n-TiO2 nano-powders themselves were harmless in terms of DNA primary damage, and the capability of pure anatase n-TiO2 to lower the levels of DNA damage induced by a mixture of genotoxic pollutant was revealed. These preliminary results on a laboratory scale are the prerequisite for deepening this new technology for the abatement of the cellular effects related with oil spill pollutants released in marine environments.
Collapse
Affiliation(s)
- Patrizia Guidi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Margherita Bernardeschi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Vittoria Scarcelli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Paolo Lucchesi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Mara Palumbo
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Science and INSTM Local Unit, University of Siena, 53100 Siena, Italy;
| | - Giada Frenzilli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| |
Collapse
|
22
|
Environmental Fate and Toxicity of Sunscreen-Derived Inorganic Ultraviolet Filters in Aquatic Environments: A Review. NANOMATERIALS 2022; 12:nano12040699. [PMID: 35215026 PMCID: PMC8876643 DOI: 10.3390/nano12040699] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/09/2023]
Abstract
An increasing number of inorganic ultraviolet filters (UVFs), such as nanosized zinc oxide (nZnO) and titanium dioxide (nTiO2), are formulated in sunscreens because of their broad UV spectrum sunlight protection and because they limit skin damage. However, sunscreen-derived inorganic UVFs are considered to be emerging contaminants; in particular, nZnO and nTiO2 UVFs have been shown to undergo absorption and bioaccumulation, release metal ions, and generate reactive oxygen species, which cause negative effects on aquatic organisms. We comprehensively reviewed the current study status of the environmental sources, occurrences, behaviors, and impacts of sunscreen-derived inorganic UVFs in aquatic environments. We find that the associated primary nanoparticle characteristics and coating materials significantly affect the environmental behavior and fate of inorganic UVFs. The consequential ecotoxicological risks and underlying mechanisms are discussed at the individual and trophic transfer levels. Due to their persistence and bioaccumulation, more attention and efforts should be redirected to investigating the sources, fate, and trophic transfer of inorganic UVFs in ecosystems.
Collapse
|
23
|
Chen C, Pan Z. Postharvest processing of tree nuts: Current status and future prospects-A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:1702-1731. [PMID: 35174625 DOI: 10.1111/1541-4337.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/07/2022]
Abstract
Tree nuts are important economic crops and are consumed as healthy snacks worldwide. In recent years, the increasing needs for more efficient and effective postharvest processing technologies have been driven by the growing production, higher quality standards, stricter food safety requirements, development of new harvesting methods, and demand to achieve energy saving and carbon neutralization. Among all, the technologies related to drying, disinfection, and disinfestation and downstream processes, such as blanching, kernel peeling, and roasting, are the most important processes influencing the quality and safety of the products. These processes make up the largest contribution to the energy consumptions and environmental impacts stemming from tree nut production. Although many studies have been conducted to improve the processing efficiency and sustainability, and preserve the product quality and safety, information from these studies is fragmented and a centralized review highlighting the important technology advancements of postharvest processing of tree nuts would benefit the industry. In this comprehensive review, almonds, walnuts, and pistachios are selected as the representative crops of tree nuts. Current statuses, recent advances, and ongoing challenges in the scientific research as well as in the industrial processing practices of these tree nuts are summarized. Some new perspectives and applications of tree nut processing waste and by-products (such as the hulls and shells) are also discussed. In addition, future trends and research needs are highlighted. The material presented here will help both stakeholders and scientists to better understand postharvest tree nut processing and provide technological recommendations to improve the efficiency and sustainability, product quality and safety, and competitiveness of the industry.
Collapse
Affiliation(s)
- Chang Chen
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
24
|
d'Amora M, Schmidt TJN, Konstantinidou S, Raffa V, De Angelis F, Tantussi F. Effects of Metal Oxide Nanoparticles in Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3313016. [PMID: 35154565 PMCID: PMC8837465 DOI: 10.1155/2022/3313016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Metal oxide nanoparticles (MO NPs) are increasingly employed in many fields with a wide range of applications from industries to drug delivery. Due to their semiconducting properties, metal oxide nanoparticles are commonly used in the manufacturing of several commercial products available in the market, including cosmetics, food additives, textile, paint, and antibacterial ointments. The use of metallic oxide nanoparticles for medical and cosmetic purposes leads to unavoidable human exposure, requiring a proper knowledge of their potentially harmful effects. This review offers a comprehensive overview of the possible toxicity of metallic oxide nanoparticles in zebrafish during both adulthood and growth stages, with an emphasis on the role of oxidative stress.
Collapse
Affiliation(s)
- Marta d'Amora
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy
| | | | | | - Vittoria Raffa
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy
| | | | | |
Collapse
|
25
|
Hezarcheshmeh NK, Azizian J. Solvent-free synthesis of new spiropyrroloindole compounds using Fe3O4/TiO2/MWCNTs MNCs via multicomponent reactions: assessment of new spiropyrroloindole antioxidant activity. Mol Divers 2022; 26:2011-2024. [DOI: 10.1007/s11030-021-10311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
|
26
|
Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NANOIMPACT 2022; 25:100377. [PMID: 35559883 DOI: 10.1016/j.impact.2021.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most widely used nanomaterials. Due to an increasing scope of applications, the exposure of humans to TiO2 NP is inevitable, such as entering the body through the mouth with food additives or drugs, invading the damaged skin with cosmetics, and entering the body through the respiratory tract during the process of production and handling. Compared with TiO2 coarse particles, TiO2 NPs have stronger conductivity, reaction activity, photocatalysis, and permeability, which may lead to greater toxicity to organisms. Given that TiO2 was classified as a category 2B carcinogen (possibly carcinogenic to humans), the genotoxicity of TiO2 NPs has become the focus of attention. There have been a series of previous studies investigating the potential genotoxicity of TiO2 NPs, but the existing research results are still controversial and difficult to conclude. More than half of studies have shown that TiO2 NPs can cause genotoxicity, suggesting that TiO2 NPs are likely to be genotoxic to humans. And the genotoxicity of TiO2 NPs is closely related to the exposure concentration, mode and time, and experimental cells/animals as well as its physicochemical properties (crystal type, size, and shape). This review summarized the latest research progress of related genotoxic effects through in vivo studies and in vitro cell tests, hoping to provide ideas for the evaluation of TiO2 NPs genotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
27
|
Kordmahalleh MY, Moradi AV, Hossaini Z, Golsefidi MA. Synthesis and evaluation of antioxidant and antimicrobial activity of new spiropyrrolopyrrolizine compounds: Using Fe
3
O
4
/TiO
2
/Multiwall carbon nanotubes (MWCNTs) magnetic nanocomposites. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Ahmadi N, Sayyed‐Alangi SZ, Varasteh‐Moradi A. Synthesis and evaluation of antioxidant and antimicrobial activity of new spiropyridine derivatives using Ag/TiO
2
/Fe
3
O
4
@MWCNTs MNCs as efficient organometallic nanocatalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Naser Ahmadi
- Department of Chemistry, Azadshahr Branch Islamic Azad University Azadshahr Iran
| | | | | |
Collapse
|
29
|
Savari M, Varasteh‐Moradi A, Sayyed‐Alangi SZ, Hossaini Z, Zafarmehrabian R. Ag/Fe
3
O
4
/TiO
2
@MWCNTs as a reusable organometallic nanocatalyst promoted green synthesis of new pyridobenzoazepines: Study of biological activity and reduction of organic pollutants. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mehdi Savari
- Department of Chemistry, Gorgan Branch Islamic Azad University Gorgan Iran
| | | | | | | | | |
Collapse
|
30
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Smart nanomaterial and nanocomposite with advanced agrochemical activities. NANOSCALE RESEARCH LETTERS 2021; 16:156. [PMID: 34664133 PMCID: PMC8523620 DOI: 10.1186/s11671-021-03612-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 05/10/2023]
Abstract
Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | |
Collapse
|
31
|
Saleem S, Kannan RR. Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery. NANOSCALE RESEARCH LETTERS 2021; 16:135. [PMID: 34424426 PMCID: PMC8382796 DOI: 10.1186/s11671-021-03592-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Delivering drugs to the brain has always remained a challenge for the research community and physicians. The blood-brain barrier (BBB) acts as a major hurdle for delivering drugs to specific parts of the brain and the central nervous system. It is physiologically comprised of complex network of capillaries to protect the brain from any invasive agents or foreign particles. Therefore, there is an absolute need for understanding of the BBB for successful therapeutic interventions. Recent research indicates the strong emergence of zebrafish as a model for assessing the permeability of the BBB, which is highly conserved in its structure and function between the zebrafish and mammals. The zebrafish model system offers a plethora of advantages including easy maintenance, high fecundity and transparency of embryos and larvae. Therefore, it has the potential to be developed as a model for analysing and elucidating the permeability of BBB to novel permeation technologies with neurospecificity. Nanotechnology has now become a focus area within the industrial and research community for delivering drugs to the brain. Nanoparticles are being developed with increased efficiency and accuracy for overcoming the BBB and delivering neurospecific drugs to the brain. The zebrafish stands as an excellent model system to assess nanoparticle biocompatibility and toxicity. Hence, the zebrafish model is indispensable for the discovery or development of novel technologies for neurospecific drug delivery and potential therapies for brain diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
32
|
Ellis LJA, Kissane S, Hoffman E, Valsami-Jones E, Brown JB, Colbourne JK, Lynch I. Multigenerational Exposure to Nano‐TiO
2
Induces Ageing as a Stress Response Mitigated by Environmental Interactions. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham B15 2TT UK
| | - Stephen Kissane
- Environmental Transcriptomics Facility School of Biosciences University of Birmingham Birmingham B15 2TT UK
| | - Elijah Hoffman
- Genome Dynamics Department Life Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham B15 2TT UK
| | - James B. Brown
- Environmental Transcriptomics Facility School of Biosciences University of Birmingham Birmingham B15 2TT UK
- Genome Dynamics Department Life Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - John K. Colbourne
- Environmental Transcriptomics Facility School of Biosciences University of Birmingham Birmingham B15 2TT UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
33
|
Gu J, Guo M, Huang C, Wang X, Zhu Y, Wang L, Wang Z, Zhou L, Fan D, Shi L, Ji G. Titanium dioxide nanoparticle affects motor behavior, neurodevelopment and axonal growth in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142315. [PMID: 33254858 DOI: 10.1016/j.scitotenv.2020.142315] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
More attention has been recently paid to the ecotoxicity of titanium dioxide nanoparticles (nano-TiO2) owing to its common use in many fields. Although previous studies have shown that nano-TiO2 is neurotoxic, the mechanism is still largely unknown. In the present study, zebrafish embryos were exposed to 0.01, 0.1, and 1.0 mg/L nano-TiO2 and 1.0 mg/L micro-TiO2 for up to 6 days post-fertilization (dpf). Exposure to 1.0 mg/L nano-TiO2 significantly decreased the body length and weight of zebrafish larvae; however, the hatching and mortality rate of zebrafish embryos did not change. Behavioral tests showed that nano-TiO2 exposure significantly reduced the swimming speed and clockwise rotation times of the larvae. The results revealed that nano-TiO2 treatment adversely affected motor neuron axon length in Tg (hb9-GFP) zebrafish and decreased central nervous system (CNS) neurogenesis in Tg (HuC-GFP) zebrafish. Additionally, real-time polymerase chain reaction analysis demonstrated that genes associated with neurogenesis (nrd and elavl3) and axonal growth (α1-tubulin, mbp, and gap43) were significantly affected by nano-TiO2 exposure. In conclusion, our study demonstrated that early-life stage exposure of zebrafish to nano-TiO2 causes adverse neural outcomes through the inhibition of neurodevelopment and motor neuron axonal growth.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Xi Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanhui Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
34
|
Chouryal YN, Nema S, Sharma RK, Kewat HL, Pandey A, Ghosh P, Bhargava Y. The nano-bio interactions of rare-earth doped BaF 2 nanophosphors shape the developmental processes of zebrafish. Biomater Sci 2020; 8:6730-6740. [PMID: 33111724 DOI: 10.1039/d0bm01282c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles with biomedical applications should be evaluated for their biocompatibility. Rare-earth doped nanoparticles with unique spectral properties are superior in vivo optical probes in comparison with quantum dots and organic dyes, however, studies describing their nano-bio interactions are still limited. Here, we have evaluated the nano-bio interactions of green-synthesized, phase-pure BaF2 nanoparticles doped with rare-earth (RE3+ = Ce3+/Tb3+) ions using larval zebrafish. We found that zebrafish can tolerate a wide concentration range of these nanoparticles, as the maximal lethality was observed at very high concentrations (more than 200 mg L-1) upon five days of continuous exposure. At a concentration of 10 mg L-1, at which Zn2+, Ti4+ and Ag+ nanoparticles are reported to be lethal to developing zebrafish, continuous exposure to our nanoparticles for four days produced no developmental anomalies, craniofacial defects, cardiac toxicity or behavioural abnormalities in the developing zebrafish larvae. We have also found that the doping of rare-earth ions has no major effect on these biomarkers. Interestingly, the function of acetylcholinesterase (AChE) and the cellular metabolic activity of whole zebrafish larvae remained unchanged, even during continuous exposure to these nanoparticles at 150 mg L-1 for four days; however, severe developmental toxicities were evident at this high concentration. Based on these results, we can conclude that the biocompatibility of rare-earth doped nanoparticles is concentration dependent. Not all biomarkers are sensitive to these nanoparticles. The high concentration-dependent toxicity occurs through a mechanism distinct from changes in the metabolic or AChE activity. The significance of these findings lies in using these nanoparticles for bioimaging applications and biomarker studies, especially for prolonged exposure times.
Collapse
Affiliation(s)
- Yogendra Nath Chouryal
- School of Chemical Science and Technology, Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar-470003, M.P., India.
| | | | | | | | | | | | | |
Collapse
|
35
|
Malhotra N, Villaflores OB, Audira G, Siregar P, Lee JS, Ger TR, Hsiao CD. Toxicity Studies on Graphene-Based Nanomaterials in Aquatic Organisms: Current Understanding. Molecules 2020; 25:molecules25163618. [PMID: 32784859 PMCID: PMC7465277 DOI: 10.3390/molecules25163618] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Graphene and its oxide are nanomaterials considered currently to be very promising because of their great potential applications in various industries. The exceptional physiochemical properties of graphene, particularly thermal conductivity, electron mobility, high surface area, and mechanical strength, promise development of novel or enhanced technologies in industries. The diverse applications of graphene and graphene oxide (GO) include energy storage, sensors, generators, light processing, electronics, and targeted drug delivery. However, the extensive use and exposure to graphene and GO might pose a great threat to living organisms and ultimately to human health. The toxicity data of graphene and GO is still insufficient to point out its side effects to different living organisms. Their accumulation in the aquatic environment might create complex problems in aquatic food chains and aquatic habitats leading to debilitating health effects in humans. The potential toxic effects of graphene and GO are not fully understood. However, they have been reported to cause agglomeration, long-term persistence, and toxic effects penetrating cell membrane and interacting with cellular components. In this review paper, we have primarily focused on the toxic effects of graphene and GO caused on aquatic invertebrates and fish (cell line and organisms). Here, we aim to point out the current understanding and knowledge gaps of graphene and GO toxicity.
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Oliver B. Villaflores
- Department of Biochemistry, Faculty of Pharmacy and Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Petrus Siregar
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan
- Correspondence: (J.-S.L.); (T.-R.G.); (C.-D.H.)
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-S.L.); (T.-R.G.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-S.L.); (T.-R.G.); (C.-D.H.)
| |
Collapse
|
36
|
Arabeyyat ZH, Al-Awady MJ, Greenway GM, Paunov VN, Rotchell JM. Toxicity of polyelectrolyte-functionalized titania nanoparticles in zebrafish (Danio rerio) embryos. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractWe investigated the effects of short-term exposure of bare TiO2NPs and polyelectrolyte-coated TiO2NPs in the 5–25 nm size range, at relatively high concentrations (of 500 and 1000 mg/L) under light or dark conditions, in D. rerio embryos. The biological endpoints investigated included embryo viability and mRNA transcript levels of antioxidant and membrane transport genes relative to control embryos. The presence of nanoparticles on the surface of embryos was assessed using TEM. The results confirm an accumulation of TiO2NPs on the outer surface (chorion) of the embryo, but not within the embryo. No significant difference in embryo viability was detected following each exposure regime. The expression of antioxidant biomarker, SOD2, was significantly impacted by the type of TiO2NP, with TiO2NPs/PSS/PAH coating exposure showing down regulation; the concentration of the nanoparticles, with down regulation at 500 mg/L; and dark/light condition with down regulation in the light. The expression levels of the hypoxia and membrane markers, HIF1 and Pxmp2, were not significantly impacted by any factor. The study indicates that SOD2 mRNA expression levels may be useful in the detection of apparent oxidative stress induced by the titania nanoparticle build up on the embryo chorion surface.
Collapse
|
37
|
Bilal M, Mehmood S, Iqbal HMN. The Beast of Beauty: Environmental and Health Concerns of Toxic Components in Cosmetics. COSMETICS 2020; 7:13. [DOI: 10.3390/cosmetics7010013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cosmetic products are used in large quantities across the world. An increasing number of chemical compounds are being added to the formulation of cosmetic products as additives, fragrances, preservatives, stabilizers, surfactants, dye and shine to potentiate their quality, property and shelf life. Owing to their widespread use, active residues of cosmetic products are continuously introduced into the environment in several ways. Many of these chemicals are bioactive and are characterized by potential bioaccumulation ability and environmental persistence, thus exerting a major risk to humans and the health of ecosystems. Hence, the indiscriminate consumption of cosmetics may present a looming issue with significant adverse impacts on public health. This review intends to spotlight a current overview of toxic ingredients used in formulating cosmetics such as parabens, triclosan, benzalkonium chloride, 1,4-dioxane, plastic microbeads, formaldehyde, diazolidinyl urea, imidazolidinyl urea, sunscreen elements (organic and inorganic UV filters) and trace metals. Specific focus is given to illustrate the biological risks of these substances on human health and aquatic system in terms of genotoxicity, cytotoxicity, neurotoxicity mutagenicity, and estrogenicity. In addition to conclusive remarks, future directions are also suggested.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico
| |
Collapse
|
38
|
Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E124. [PMID: 31936581 PMCID: PMC7022691 DOI: 10.3390/nano10010124] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
This article provides an overview of current research into the development, synthesis, photocatalytic bacterial activity, biocompatibility and cytotoxic properties of various visible-light active titanium dioxide (TiO2) nanoparticles (NPs) and their nanocomposites. To achieve antibacterial inactivation under visible light, TiO2 NPs are doped with metal and non-metal elements, modified with carbonaceous nanomaterials, and coupled with other metal oxide semiconductors. Transition metals introduce a localized d-electron state just below the conduction band of TiO2 NPs, thereby narrowing the bandgap and causing a red shift of the optical absorption edge into the visible region. Silver nanoparticles of doped TiO2 NPs experience surface plasmon resonance under visible light excitation, leading to the injection of hot electrons into the conduction band of TiO2 NPs to generate reactive oxygen species (ROS) for bacterial killing. The modification of TiO2 NPs with carbon nanotubes and graphene sheets also achieve the efficient creation of ROS under visible light irradiation. Furthermore, titanium-based alloy implants in orthopedics with enhanced antibacterial activity and biocompatibility can be achieved by forming a surface layer of Ag-doped titania nanotubes. By incorporating TiO2 NPs and Cu-doped TiO2 NPs into chitosan or the textile matrix, the resulting polymer nanocomposites exhibit excellent antimicrobial properties that can have applications as fruit/food wrapping films, self-cleaning fabrics, medical scaffolds and wound dressings. Considering the possible use of visible-light active TiO2 nanomaterials for various applications, their toxicity impact on the environment and public health is also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
39
|
Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 2019; 40:37-63. [DOI: 10.1002/jat.3910] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
40
|
Soler de la Vega AC, Molins-Delgado D, Barceló D, Díaz-Cruz MS. Nanosized titanium dioxide UV filter increases mixture toxicity when combined with parabens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109565. [PMID: 31514078 DOI: 10.1016/j.ecoenv.2019.109565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 05/06/2023]
Abstract
To address the concern about the environmental impact of engineered nanoparticles frequently used in the recently marketed personal care and hygiene products (PCPs), we conducted a toxicity assessment and determined the EC50 values of the nanosized inorganic UV filter TiO2 (nano-TiO2), as well as those of the organic UV filter oxybenzone (BP3) and three parabens (methyl, propyl, and benzylparaben) present in most PCPs formulation. The bioassays were carried out through standardized toxicity bioassays on two environmentally relevant aquatic species i.e. Daphnia magna and Phaeodactylum tricornutum. For nano-TiO2 48 h EC50 on D. magna was 3.09 mgL-1 and for parabens ranged from 32.52 to 1.35 mgL-1. The two most toxic compounds on D. magna, nano-TiO2 and benzylparaben (BzP), were further tested with the algae. For nano-TiO2 72 h EC50 value was 2.27 mgL-1 and for BzP it was 10.61 mgL-1. In addition, D. magna was exposed to selected binary mixtures of the target compounds i.e. nano-TiO2+BP3, nano-TiO2+BzP and BP3+BzP On the endpoint of 48 h, a synergistic action was observed for nano-TiO2+BP3 and nano-TiO2+BzP, but an antagonistic effect occurred in the mixture BP3+BzP. These findings suggest that nano-TiO2 can increase the toxicity of the mixture when combined with other compounds.
Collapse
Affiliation(s)
- Ana C Soler de la Vega
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research of the Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034. Barcelona, Spain
| | - Daniel Molins-Delgado
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research of the Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034. Barcelona, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research of the Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034. Barcelona, Spain
| | - M Silvia Díaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research of the Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034. Barcelona, Spain.
| |
Collapse
|
41
|
de Lima Nascimento TR, de Amoêdo Campos Velo MM, Silva CF, Costa Cruz SBS, Gondim BLC, Mondelli RFL, Castellano LRC. Current Applications of Biopolymer-based Scaffolds and Nanofibers as Drug Delivery Systems. Curr Pharm Des 2019; 25:3997-4012. [PMID: 31701845 DOI: 10.2174/1381612825666191108162948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high surface-to-volume ratio of polymeric nanofibers makes them an effective vehicle for the release of bioactive molecules and compounds such as growth factors, drugs, herbal extracts and gene sequences. Synthetic polymers are commonly used as sensors, reinforcements and energy storage, whereas natural polymers are more prone to mimicking an extracellular matrix. Natural polymers are a renewable resource and classified as an environmentally friendly material, which might be used in different techniques to produce nanofibers for biomedical applications such as tissue engineering, implantable medical devices, antimicrobial barriers and wound dressings, among others. This review sheds some light on the advantages of natural over synthetic polymeric materials for nanofiber production. Also, the most important techniques employed to produce natural nanofibers are presented. Moreover, some pieces of evidence regarding toxicology and cell-interactions using natural nanofibers are discussed. Clearly, the potential extrapolation of such laboratory results into human health application should be addressed cautiously.
Collapse
Affiliation(s)
- Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | | | - Camila Félix Silva
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Sara Brito Silva Costa Cruz
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Rafael Francisco Lia Mondelli
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
42
|
Remzova M, Zouzelka R, Brzicova T, Vrbova K, Pinkas D, Rőssner P, Topinka J, Rathousky J. Toxicity of TiO 2, ZnO, and SiO 2 Nanoparticles in Human Lung Cells: Safe-by-Design Development of Construction Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E968. [PMID: 31269717 PMCID: PMC6669541 DOI: 10.3390/nano9070968] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 02/03/2023]
Abstract
Rapid progress in the development of highly efficient nanoparticle-based construction technologies has not always been accompanied by a corresponding understanding of their effects on human health and ecosystems. In this study, we compare the toxicological effects of pristine TiO2, ZnO, SiO2, and coated SiO2 nanoparticles, and evaluate their suitability as additives to consolidants of weathered construction materials. First, water soluble tetrazolium 1 (WST-1) and lactate dehydrogenase (LDH) assays were used to determine the viability of human alveolar A549 cells at various nanoparticle concentrations (0-250 μg mL-1). While the pristine TiO2 and coated SiO2 nanoparticles did not exhibit any cytotoxic effects up to the highest tested concentration, the pristine SiO2 and ZnO nanoparticles significantly reduced cell viability. Second, as all developed nanoparticle-modified consolidants increased the mechanical strength of weathered sandstone, the decisive criterion for the selection of the most suitable nanoparticle additive was as low toxicity as possible. We believe that this approach would be of high importance in the industry, to identify materials representing top functional properties and low toxicity, at an early stage of the product development.
Collapse
Affiliation(s)
- Monika Remzova
- J. Heyrovsky Institute of Physical Chemistry of the CAS, Dolejskova 3, 18223 Prague, Czech Republic
| | - Radek Zouzelka
- J. Heyrovsky Institute of Physical Chemistry of the CAS, Dolejskova 3, 18223 Prague, Czech Republic
| | - Tana Brzicova
- Institute of Experimental Medicine of the CAS, Videnska 1083, 14220 Prague, Czech Republic
| | - Kristyna Vrbova
- Institute of Experimental Medicine of the CAS, Videnska 1083, 14220 Prague, Czech Republic
| | - Dominik Pinkas
- Institute of Molecular Genetics of the CAS, Microscopy Center, Electron Microscopy Core Facility, 14220 Prague, Czech Republic
| | - Pavel Rőssner
- Institute of Experimental Medicine of the CAS, Videnska 1083, 14220 Prague, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine of the CAS, Videnska 1083, 14220 Prague, Czech Republic
| | - Jiri Rathousky
- J. Heyrovsky Institute of Physical Chemistry of the CAS, Dolejskova 3, 18223 Prague, Czech Republic.
| |
Collapse
|
43
|
Molecular aspect of phytofabrication of gold nanoparticle from Andrographis peniculata photosystem II and their in vivo biological effect on embryonic zebrafish (Danio rerio). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2018.100201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Toxic Effects of TiO₂ NPs on Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040523. [PMID: 30781732 PMCID: PMC6406522 DOI: 10.3390/ijerph16040523] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a widely used nanomaterial due to the photocatalytic activity and absorption of ultraviolet light of specific wavelengths. This study investigated the toxic effects of rutile TiO2 NPs on zebrafish by examining its embryos and adults. In the embryo acute toxicity test, exposure to 100 mg/L TiO2 NPs didn’t affect the hatching rate of zebrafish embryos, and there was no sign of deformity. In the adult toxicity test, the effects of TiO2 NPs on oxidative damage in liver, intestine and gill tissue were studied. Enzyme linked immunosorbent assay (ELISA) and fluorescence-based quantitative real-time reverse transcription PCR (qRT-PCR) were used to detect the three antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione S transferase (GSTs) in the above mentioned zebrafish organs at protein and gene levels. The results showed that long-term exposure to TiO2 NPs can cause oxidative damage to organisms; and compared with the control group, the activity of the three kinds of enzyme declined somewhat at the protein level. In addition, long-term exposure to TiO2 NPs could cause high expression of CAT, SOD and GSTs in three organs of adult zebrafish in order to counter the adverse reaction. The effects of long-term exposure to TiO2 NPs to adult zebrafish were more obvious in the liver and gill.
Collapse
|
45
|
Monteiro R, Costa S, Coppola F, Freitas R, Vale C, Pereira E. Evidences of metabolic alterations and cellular damage in mussels after short pulses of Ti contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:987-995. [PMID: 30308873 DOI: 10.1016/j.scitotenv.2018.08.314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Mytilus galloprovincialis mussels were exposed to seawater contaminated with Ti. Initial concentrations were 4.1, 32, and 66 μg L-1 that declined during the first 24 h of the experiments, and after 48 h values were <2 μg L-1. Experiments were run in triplicate, under constant salinity and temperature. Mussels were fed every two days, and water renewed every seven days and Ti concentrations re-stabilized. During the first 28 days of experimental period, mussels were exposed to four short pulses of contamination, followed by few days of low Ti concentration between weekly contamination renewals. Then mussels were exposed to additional 14-day exposure to Ti uncontaminated seawater. Only residual Ti concentrations were measured in mussels' whole soft tissue after the four pulses of Ti contamination, indicating low Ti accumulation by the organisms. Nevertheless, the biomarkers related to mussels' metabolic capacity (electron transport system activity, ETS), oxidative damage (lipid peroxidation, LPO and reduced glutathione content, GSH), and defense mechanisms (antioxidant and biotransformation enzymes) evidenced the impact of Ti during the 28 days of experimental period. The biomarkers that better indicated the recovery of mussels' biochemical performance were the ETS, LPO, GSH, and the antioxidant enzyme glutathione peroxidase (GPx). LPO was the prime indicator among the analyzed biochemical responses. Organisms appear to hold coping mechanisms to lower the damage induced by Ti, and to recover, albeit the 14 days period of exposure to uncontaminated seawater following the four Ti pulses were not enough for full recovery, as evidenced by results on LPO levels and GSH concentrations. Despite the low solubility of Ti in seawater, the toxicity of this element to a model marine organism was demonstrated.
Collapse
Affiliation(s)
- Rui Monteiro
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos Vale
- CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Eduarda Pereira
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
46
|
Dasmahapatra AK, Dasari TPS, Tchounwou PB. Graphene-Based Nanomaterials Toxicity in Fish. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 247:1-58. [PMID: 30413975 PMCID: PMC6481941 DOI: 10.1007/398_2018_15] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Due to their unique physicochemical properties, graphene-based nanoparticles (GPNs) constitute one of the most promising types of nanomaterials used in biomedical research. GPNs have been used as polymeric conduits for nerve regeneration and carriers for targeted drug delivery and in the treatment of cancer via photothermal therapy. Moreover, they have been used as tracers to study the distribution of bioactive compounds used in healthcare. Due to their extensive use, GPN released into the environment would probably pose a threat to living organisms and ultimately to human health. Their accumulation in the aquatic environment creates problems to aquatic habitats as well as to food chains. Until now the potential toxic effects of GPN are not properly understood. Despite agglomeration and long persistence in the environment, GPNs are able to cross the cellular barriers successfully, entered into the cells, and are able to interact with almost all the cellular sites including the plasma membrane, cytoplasmic organelles, and nucleus. Their interaction with DNA creates more potential threats to both the genome and epigenome. In this brief review, we focused on fish, mainly zebrafish (Danio rerio), as a potential target animal of GPN toxicity in the aquatic ecosystem.
Collapse
Affiliation(s)
- Asok K Dasmahapatra
- Research Centers in Minority Institutions, Center for Environmental Health, Jackson State University, Jackson, MS, USA
| | - Thabitha P S Dasari
- Research Centers in Minority Institutions, Center for Environmental Health, Jackson State University, Jackson, MS, USA
| | - Paul B Tchounwou
- Research Centers in Minority Institutions, Center for Environmental Health, Jackson State University, Jackson, MS, USA.
| |
Collapse
|
47
|
Da Silva GH, Clemente Z, Khan LU, Coa F, Neto LLR, Carvalho HWP, Castro VL, Martinez DST, Monteiro RTR. Toxicity assessment of TiO 2-MWCNT nanohybrid material with enhanced photocatalytic activity on Danio rerio (Zebrafish) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:136-143. [PMID: 30195205 DOI: 10.1016/j.ecoenv.2018.08.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 05/24/2023]
Abstract
The increasing production and use of nanomaterials is causing serious concerns about their safety to human and environmental health. However, the applications of titanium dioxide nanoparticles (TiO2NP) and multiwalled carbon nanotubes (MWCNT) hybrids has grown considerably, due to their enhanced photocatalytic efficiency. To our knowledge, there are no reports available to the scientific community about their toxicity. In this work, we perform a toxicity assessment of TiO2NP and TiO2-MWCNT nanohybrid materials using Zebrafish embryos standardized 96 h early life stage assay, under different exposure conditions (with and without UV light exposure). After exposure the parameters assessed were acute toxicity, hatching rate, growth, yolk sac size, and sarcomere length. In addition, μ-probe X-ray fluorescence spectroscopy (µ-XRF) was employed to observe if nanoparticles were uptaken by zebrafish embryos and consequently accumulated in their organisms. Neither TiO2NP nor TiO2-MWCNT nanohybrids presented acute toxicity to the zebrafish embryos. Moreover, TiO2NP presents sublethal effects for total length (with and without UV light exposure) on the embryos. This work contributes to the understanding of the potential adverse effects of the emerging nanohybrid materials towards safe innovation approaches in nanotechnology.
Collapse
Affiliation(s)
- Gabriela H Da Silva
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariuna, São Paulo, Brazil.
| | - Zaira Clemente
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariuna, São Paulo, Brazil
| | - Latif U Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Francine Coa
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Lais L R Neto
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Hudson W P Carvalho
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Vera L Castro
- Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariuna, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| | - Regina T R Monteiro
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
48
|
Samaee SM, Manteghi N, Yokel RA, Mohajeri-Tehrani MR. Morphometric characteristics and time to hatch as efficacious indicators for potential nanotoxicity assay in zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3063-3076. [PMID: 30183097 DOI: 10.1002/etc.4266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/11/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Although the effects of nano-sized titania (nTiO2 ) on hatching events (change in hatching time and total hatching) in zebrafish have been reported, additional consequences of nTiO2 exposure (i.e., the effects of nTiO2 -induced changes in hatching events and morphometric parameters on embryo-larvae development and survivability) have not been reported. To address this knowledge gap, embryos 4 h postfertilization were exposed to nTiO2 (0, 0.01, 10, and 1000 μg/mL) for 220 h. Hatching rate (58, 82, and 106 h postexposure [hpe]), survival rate (8 times from 34 to 202 hpe), and 21 morphometric characteristics (8 times from 34 to 202 hpe) were recorded. Total hatching (rate at 106 hpe) was significantly and positively correlated to survival rate, but there was no direct association between nTiO2 -induced change in hatching time (hatching rate at 58 and 82 hpe) and survival rate. At 58, 82, and 106 hpe, morphometric characteristics were significantly correlated to hatching rate, suggesting that the nTiO2 -induced change in hatching time can affect larval development. The morphometric characteristics that were associated with change in hatching time were also significantly correlated to survival rate, suggesting an indirect significant influence of the nTiO2 -induced change in hatching time on survivability. These results show a significant influence of nTiO2 -induced change in hatching events on zebrafish embryo-larvae development and survivability. They also show that morphometric maldevelopments can predict later-in-life consequences (survivability) of an embryonic exposure to nTiO2 . This suggests that zebrafish can be sensitive biological predictors of nTiO2 acute toxicity. Environ Toxicol Chem 2018;37:3063-3076. © 2018 SETAC.
Collapse
Affiliation(s)
- Seyed-Mohammadreza Samaee
- Aquatic Lab, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Nafiseh Manteghi
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Robert A Yokel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
49
|
Yu J, Li L, Qian Y, Lou H, Yang D, Qiu X. Facile and Green Preparation of High UV-Blocking Lignin/Titanium Dioxide Nanocomposites for Developing Natural Sunscreens. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04101] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Ozmen N, Erdemoglu S, Gungordu A, Asilturk M, Turhan DO, Akgeyik E, Harper SL, Ozmen M. Photocatalytic degradation of azo dye using core@shell nano-TiO 2 particles to reduce toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29493-29504. [PMID: 30136182 DOI: 10.1007/s11356-018-2942-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Clean and safe water is fundamental for human and environmental health. Traditional remediation of textile dye-polluted water with chemical, physical, and biological processes has many disadvantages. Due to this, nano-engineered materials are drawing more attention to this area. However, the widespread use of nano-particles for this purpose may lead to photocatalytic degradation of xenobiotics, while increasing the risk of nano-particle-induced ecotoxicity. Therefore, we comparatively evaluated the toxicity of novel synthesized core@shell TiO2 and SiO2 nano-particles to embryonic stages of Danio rerio and Xenopus laevis. The ability of photocatalytic destruction of the synthesized nano-particles was tested using toxic azo dye, disperse red 65, and the effects of reducing the toxicity were evaluated. The reflux process was used to synthesize catalysts in the study. The samples were characterized by scanning electron microscopy, X-ray fluorescence spectroscopy, X-ray diffractometry, BET surface area, and UV-vis-diffuse reflectance spectra. It was determined that the synthesized nano-particles had no significant toxic effect on D. rerio and X. laevis embryos. On the other hand, photocatalytic degradation of the dye significantly reduced lethal effects on embryonic stages of the organisms. Therefore, we suggest that specific nano-particles may be useful for water remediation to prevent human health and environmental impact. However, further risk assessment should be conducted for the ecotoxicological risks of nano-particles spilled in aquatic environments and the relationship of photocatalytic interaction with nano-particles and xenobiotics.
Collapse
Affiliation(s)
- Nesrin Ozmen
- Department of Mathematics and Science Education, Faculty of Education, Inonu University, 44280, Malatya, Turkey
| | - Sema Erdemoglu
- Department of Chemistry, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey
| | - Abbas Gungordu
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey
| | - Meltem Asilturk
- Department of Materials Science and Engineering, Faculty of Engineering, Akdeniz University, 07058, Antalya, Turkey
| | - Duygu Ozhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey
| | - Emrah Akgeyik
- Department of Chemistry, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey
| | - Stacey L Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Murat Ozmen
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey.
| |
Collapse
|