1
|
Li M, Wang D, Huang X, Wang S, Chen Z, Junaid M, Xie S. Knockdown of cytochrome P450 1 A (cyp1a) gene suppresses growth and oxygen tolerance in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2025; 304:111846. [PMID: 40118204 DOI: 10.1016/j.cbpa.2025.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cyp1a (cytochrome P450 1 A) is critical for metabolizing endogenous substances and environmental chemicals. In this study, a zebrafish strain KI (cyp1a:mcherry), exhibiting low cyp1a gene expression, was compared with wild-type zebrafish (WT) to investigate the effects of cyp1a on growth and hypoxia tolerance. The results demonstrated that low cyp1a expression significantly inhibited zebrafish growth and reduced hypoxia tolerance. Specifically, KI zebrafish exhibited slower growth rates and higher sensitivity to low oxygen conditions compared to WT. These physiological phenotypes directly link low cyp1a expression to impaired growth and reduced environmental adaptation. Transcriptomic analysis revealed potential mechanisms underlying these effects, including up-regulation of digestive system-related genes (e.g., cpa1, cpb1) and dysregulation of pathways involved in detoxification, stress response, and steroid biosynthesis. These findings highlight the importance of maintaining normal cyp1a expression for healthy growth and environmental adaptation in zebrafish.
Collapse
Affiliation(s)
- Min Li
- South China Agricultural University, College of Marine Sciences, Guangzhou 510642, China
| | - Dongjie Wang
- South China Agricultural University, College of Marine Sciences, Guangzhou 510642, China
| | - Xiaoping Huang
- South China Agricultural University, College of Marine Sciences, Guangzhou 510642, China
| | - Shulan Wang
- South China Agricultural University, College of Marine Sciences, Guangzhou 510642, China
| | - Zhenhan Chen
- South China Agricultural University, College of Marine Sciences, Guangzhou 510642, China
| | - Muhammad Junaid
- South China Agricultural University, College of Marine Sciences, Guangzhou 510642, China.
| | - Shaolin Xie
- South China Agricultural University, College of Marine Sciences, Guangzhou 510642, China.
| |
Collapse
|
2
|
Park J, Brown C, Hess C, Armstrong M, Galvez F, Whitehead A. Multiple stressors in the Anthropocene: Urban evolutionary history modifies sensitivity to the toxic effects of crude oil exposure in killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640141. [PMID: 40060406 PMCID: PMC11888386 DOI: 10.1101/2025.02.25.640141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Persistence of wild species in human-altered environments is difficult, in part because challenges to fitness are complex when multiple environmental changes occur simultaneously, which is common in the Anthropocene. This complexity is difficult to conceptualize because the nature of environmental change is often highly context specific. A mechanism-guided approach may help to shape intuition and predictions about complexity; fitness challenges posed by co-occurring stressors with similar mechanisms of action may be less severe than for those with different mechanisms of action. We approach these considerations within the context of ecotoxicology because this field is built upon a rich mechanistic foundation. We hypothesized that evolved resistance to one class of common toxicants would afford resilience to the fitness impacts of another class of common toxicants that shares mechanisms of toxicity. Fundulus killifish populations in urban estuaries have repeatedly evolved resistance to persistent organic pollutants including PCBs. Since PCBs and some of the toxicants that constitute crude oil (e.g., high molecular weight PAHs) exert toxicity through perturbation of AHR signaling, we predicted that PCB resistant populations would also be resilient to crude oil toxicity. Common garden comparative oil exposure experiments, including killifish populations with different exposure histories, showed that most killifish populations were sensitive to fitness impacts (reproduction and development) caused by oil exposure, but that fish from the PCB-resistant population were insensitive. Population differences in toxic outcomes were not compatible with random-neutral expectations. Transcriptomics revealed that the molecular mechanisms that contributed to population variation in PAH resilience were shared with those that contribute to evolved variation in PCB resilience. We conclude that the fitness challenge posed by environmental pollutants is effectively reduced when those chemicals share mechanisms that affect fitness. Mechanistic considerations may help to scale predictions regarding the fitness challenges posed by stressors that may co-occur in human-altered environments.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Charles Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chelsea Hess
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Madison Armstrong
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Development and Applications of a Zebrafish (Danio rerio) CYP1A-Targeted Monoclonal Antibody (CRC4) with Reactivity across Vertebrate Taxa: Evidence for a Conserved CYP1A Epitope. TOXICS 2022; 10:toxics10070404. [PMID: 35878309 PMCID: PMC9320060 DOI: 10.3390/toxics10070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
CYP1A is a heme-thiolate enzyme associated with the cytochrome P4501A1 monooxygenase system and is inducible by a wide variety of xenobiotics and endogenous ligands that bind and activate the aryl hydrocarbon receptor (AHR). The AHR-CYP1A axis is important for detoxification of certain xenobiotics and for homeostatic balance of endogenous sex hormones, amine hormones, vitamins, fatty acids, and phospholipids. Herein, we generated and described applications of a zebrafish CYP1A-targeted monoclonal antibody (mAb CRC4) that fortuitously recognizes induced CYP1A across vertebrate taxa, including fish, chicken, mouse, rat, and human. We then demonstrated that mAb CRC4 targets a highly conserved epitope signature of vertebrate CYP1A. The unique complimentary determining region (CDR) sequences of heavy and light chains were determined, and these Ig sequences will allow for the expression of recombinant mAb CRC4, thus superseding the need for long-term hybridoma maintenance. This antibody works well for immunohistochemistry (IHC), as well as whole-mounted IHC in zebrafish embryos. Monoclonal antibody CRC4 may be particularly useful for studying the AHR-CYP1A axis in multiple vertebrate species and within the context of Oceans and Human Health research. By using archived samples, when possible, we actively promoted efforts to reduce, replace, and refine studies involving live animals.
Collapse
|
4
|
Franco ME, Ramirez AJ, Johanning KM, Matson CW, Lavado R. In vitro-in vivo biotransformation and phase I metabolite profiling of benzo[a]pyrene in Gulf killifish (Fundulus grandis) populations with different exposure histories. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106057. [PMID: 34942459 DOI: 10.1016/j.aquatox.2021.106057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Chronic exposure to pollution may lead populations to display evolutionary adaptations associated with cellular and physiological mechanisms of defense against xenobiotics. This could result in differences in the way individuals of the same species, but inhabiting different areas, cope with chemical exposure. In the present study, we explore two Gulf killifish (Fundulus grandis) populations with different exposure histories for potential differences in the biotransformation of benzo[a]pyrene (BaP), and conduct a comparative evaluation of in vitro and in vivo approaches to describe the applicability of new approach methodologies (NAMs) for biotransformation assessments. Pollution-adapted and non-adapted F. grandis were subjected to intraperitoneal (IP) injections of BaP in time-course exposures, prior to measurements of CYP biotransformation activity, BaP liver concentrations, and the identification and quantification of phase I metabolites. Additionally, substrate depletion bioassays using liver S9 fractions were employed for measurements of intrinsic hepatic clearance and to evaluate the production of metabolites in vitro. Pollution-adapted F. grandis presented significantly lower CYP1A activity and intrinsic clearance rates that were 3 to 4 times lower than non-adapted fish. The metabolite profiling of BaP showed the presence of 1‑hydroxy-benzo[a]pyrene in both the in vitro and in vivo approaches but with no significant population differences. Contrarily, 9‑hydroxy-benzo[a]pyrene and benzo[a]pyrene-4,5-dihydrodiol, only identified through the in vivo approach, presented higher concentrations in the bile of pollution-adapted fish relative to non-adapted individuals. These observations further the understanding of the evolutionary adaptation of F. grandis inhabiting heavily polluted environments in the Houston Ship Channel, TX, USA, and highlight the need to consider the evolutionary history of populations of interest during the implementation of NAMs.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Alejandro J Ramirez
- Mass Spectrometry Core Facility, Baylor University, Waco, TX, 76798, United States
| | | | - Cole W Matson
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
5
|
Franco ME, Johanning K, Matson CW, Lavado R. Reduced biotransformation of polycyclic aromatic hydrocarbons (PAHs) in pollution-adapted Gulf killifish (Fundulus grandis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150854. [PMID: 34655636 DOI: 10.1016/j.scitotenv.2021.150854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/22/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic pollution represents a significant source of selection, potentially leading to the emergence of evolutionary adaptations in chronically exposed organisms. A recent example of this scenario corresponds to Gulf killifish (Fundulus grandis) populations inhabiting the Houston Ship Channel (HSC), Texas, USA, which have been documented to have adapted to this heavily contaminated environment. Although not fully elucidated, one particularly important aspect of their adaptation involves the reduced inducibility of the aryl hydrocarbon receptor (AhR) and, potentially, the alteration of major biotransformation pathways. In the present study, we employed a modified Organization for Economic Cooperation and Development (OECD) 319-B test guideline to explore population and sex-related differences in the hepatic biotransformation of six polycyclic aromatic hydrocarbons (PAHs) in F. grandis populations with different exposure histories. Pollution-adapted F. grandis showed significantly lower hepatic clearance of PAHs than non-adapted fish, especially for high molecular weight PAHs (chrysene, benzo[k]fluoranthene, and benzo[a]pyrene), with pollution-adapted females presenting the lowest clearance. The characterization of different phase I biotransformation enzymes revealed that the basal activity of CYP1A, fundamental in the biotransformation of PAHs, was significantly lower in pollution-adapted fish, especially in females, which showed the lowest activity. Contrarily, basal CYP2C9-like activity was significantly higher in pollution-adapted fish. These results demonstrate the importance of exposure and evolutionary histories in shaping organisms' responses to pollution and provide significant evidence of sex-specific biotransformation differences in F. grandis populations.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States of America
| | - Karla Johanning
- KJ Scientific, LLC, Georgetown, TX 78626, United States of America
| | - Cole W Matson
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States of America; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, United States of America
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States of America.
| |
Collapse
|
6
|
Brans KI, Almeida RA, Fajgenblat M. Genetic differentiation in pesticide resistance between urban and rural populations of a nontarget freshwater keystone interactor, Daphnia magna. Evol Appl 2021; 14:2541-2552. [PMID: 34745342 PMCID: PMC8549624 DOI: 10.1111/eva.13293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023] Open
Abstract
There is growing evidence that urbanization drives adaptive evolution in response to thermal gradients. One such example is documented in the water flea Daphnia magna. However, organisms residing in urban lentic ecosystems are increasingly exposed to chemical pollutants such as pesticides through run-off and aerial transportation. The extent to which urbanization drives the evolution of pesticide resistance in aquatic organisms and whether this is impacted by warming and thermal adaptation remains limitedly studied. We performed a common garden rearing experiment using multiple clonal lineages originating from five replicated urban and rural D. magna populations, in which we implemented an acute toxicity test exposing neonates (<24h) to either a solvent control or the organophosphate pesticide chlorpyrifos. Pesticide exposures were performed at two temperatures (20°C vs. 24°C) to test for temperature-associated differences in urbanization-driven evolved pesticide resistance. We identified a strong overall effect of pesticide exposure on Daphnia survival probability (-72.8 percentage points). However, urban Daphnia genotypes showed higher survival probabilities compared to rural ones in the presence of chlorpyrifos (+29.7 percentage points). Our experiment did not reveal strong temperature x pesticide or temperature x pesticide x urbanization background effects on survival probability. The here observed evolution of resistance to an organophosphate pesticide is a first indication Daphnia likely also adapts to pesticide pollution in urban areas. Increased pesticide resistance could facilitate their population persistence in urban ponds, and feed back to ecosystem functions, such as top-down control of algae. In addition, adaptive evolution of nontarget organisms to pest control strategies and occupational pesticide use may modulate how pesticide applications affect genetic and species diversity in urban areas.
Collapse
Affiliation(s)
- Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution, and ConservationKU LeuvenLeuvenBelgium
| | - Rafaela A. Almeida
- Laboratory of Aquatic Ecology, Evolution, and ConservationKU LeuvenLeuvenBelgium
| | - Maxime Fajgenblat
- Laboratory of Aquatic Ecology, Evolution, and ConservationKU LeuvenLeuvenBelgium
| |
Collapse
|
7
|
Gurung S, Dubansky B, Virgen CA, Verbeck GF, Murphy DW. Effects of crude oil vapors on the cardiovascular flow of embryonic Gulf killifish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141627. [PMID: 33181982 DOI: 10.1016/j.scitotenv.2020.141627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Direct contact with toxicants in crude oil during embryogenesis causes cardiovascular defects, but the effects of exposure to airborne volatile organic compounds released from spilled oil are not well understood. The effects of crude oil-derived airborne toxicants on peripheral blood flow were examined in Gulf killifish (Fundulus grandis) since this model completes embryogenesis in the air. Particle image velocimetry was used to measure in vivo blood flow in intersegmental arteries of control and oil-exposed embryos. Significant effects in oil-exposed embryos included increased pulse rate, reduced mean blood flow speed and volumetric flow rate, and decreased pulsatility, demonstrating that normal-appearing oil-exposed embryos retain underlying cardiovascular defects. Further, hematocrit moderately increased in oil-exposed embryos. This study highlights the potential for fine-scale physiological measurement techniques to better understand the sub-lethal effects of oil exposure and demonstrates the efficacy of Gulf killifish as a unique teleost model for aerial toxicant exposure studies.
Collapse
Affiliation(s)
- Sanjib Gurung
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, United States
| | - Benjamin Dubansky
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States
| | - Camila A Virgen
- Department of Chemistry, University of North Texas, Denton, TX 76203, United States
| | - Guido F Verbeck
- Department of Chemistry, University of North Texas, Denton, TX 76203, United States
| | - David W Murphy
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
8
|
Oziolor EM, DeSchamphelaere K, Lyon D, Nacci D, Poynton H. Evolutionary Toxicology-An Informational Tool for Chemical Regulation? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:257-268. [PMID: 31978273 PMCID: PMC7885860 DOI: 10.1002/etc.4611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
| | - Karel DeSchamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, GhEnToxLab Unit, Ghent University, Gent, Belgium
| | - Delina Lyon
- Shell Health, Shell Oil Company, Houston, TX, USA
| | - Diane Nacci
- Atlantic Coastal Environmental Sciences Division, Center for Environmental Measurements and Modeling, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Helen Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
9
|
Volkoff SJ, Osterberg JS, Jayasundara N, Cooper E, Hsu-Kim H, Rogers L, Gehrke GE, Jayaraman S, Di Giulio RT. Embryonic Fundulus heteroclitus responses to sediment extracts from differentially contaminated sites in the Elizabeth River, VA. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1126-1135. [PMID: 31620948 PMCID: PMC7768634 DOI: 10.1007/s10646-019-02116-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 05/27/2023]
Abstract
Sites along the Elizabeth River are contaminated with polycyclic aromatic hydrocarbons (PAHs) from historical creosote production and other industrial processes. Previous studies have demonstrated that Atlantic killifish collected from sites throughout the Elizabeth River display resistance to the teratogenic effects of PAH-exposure in a manner commensurate with sediment PAH concentrations. The current study characterized various chemical pollutants in sediment and investigated the effects of aqueous sediment extracts from sites along the Elizabeth River to the cardiac development of Atlantic killifish embryos from fish collected from an uncontaminated reference site. Embryonic cardiac deformities were more prevalent after exposure to extracts from sites with high PAH loads. However, activation of cytochrome P4501A, a gene up-regulated by PAH-induction of the aryl hydrocarbon receptor and measured using an in ovo EROD assay, did not consistently increase with PAH concentrations. This work further characterizes sediments in the Elizabeth River, as well as provides insight into the evolutionary pressures at each ER site.
Collapse
Affiliation(s)
| | | | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Ellen Cooper
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Heileen Hsu-Kim
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Laura Rogers
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | | | - Saro Jayaraman
- United States Environmental Protection Agency, Narragansett, RI, USA
| | | |
Collapse
|
10
|
Scott WC, Haddad SP, Saari GN, Chambliss CK, Conkle JL, Matson CW, Brooks BW. Influence of salinity and pH on bioconcentration of ionizable pharmaceuticals by the gulf killifish, Fundulus grandis. CHEMOSPHERE 2019; 229:434-442. [PMID: 31082711 DOI: 10.1016/j.chemosphere.2019.04.188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 05/24/2023]
Abstract
Estuaries routinely receive discharges of contaminants of emerging concern from urban regions. Within these dynamic estuarine systems, salinity and pH can vary across spatial and temporal scales. Our previous research identified bioaccumulation of the calcium channel blocker diltiazem and the antihistamine diphenhydramine in several species of fish residing in multiple urban estuaries along the Gulf of Mexico in Texas, where field-measured observations of diltiazem in fish plasma exceeded human therapeutic plasma doses. However, there remains a limited understanding of pharmaceutical bioaccumulation in estuarine environments. Here, we examined the influence of pH and salinity on bioconcentration of three pharmaceuticals in the Gulf killifish, Fundulus grandis. F. grandis were exposed to low levels of the ionizable pharmaceuticals carbamazepine, diltiazem, and diphenhydramine at two salinities (5 ppt, 20 ppt) and two pH levels (6.7, 8.3). pH influenced bioconcentration of select weak base pharmaceuticals, while salinity did not, suggesting that intestinal uptake via drinking does not appear to be a major exposure route of these pharmaceuticals in killifish. Compared to our previous pH dependent uptake observations with diphenhydramine in the fathead minnow model, killifish apparent volume of distribution values were markedly lower than fatheads, though killifish bioconcentration factors were similar at high pH and four fold higher at low pH than freshwater fish. Advancing an understanding of environmental gradient influences on pharmacokinetics among fish is necessary to improve bioaccumulation assessments and interpretation of toxicological observations for ionizable contaminants.
Collapse
Affiliation(s)
- W Casan Scott
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Samuel P Haddad
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Gavin N Saari
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - C Kevin Chambliss
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Jeremy L Conkle
- Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX, USA
| | - Cole W Matson
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Oziolor EM, Apell JN, Winfield ZC, Back JA, Usenko S, Matson CW. Polychlorinated biphenyl (PCB) contamination in Galveston Bay, Texas: Comparing concentrations and profiles in sediments, passive samplers, and fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:609-618. [PMID: 29433101 DOI: 10.1016/j.envpol.2018.01.086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 05/14/2023]
Abstract
The industrialized portion of the Houston Ship Channel (HSC) is heavily contaminated with anthropogenic contaminants, most prominent of which are the polychlorinated biphenyls (PCBs). This contamination has driven adaptive evolution in a keystone species for Galveston Bay, the Gulf killifish (Fundulus grandis). We investigated the geographical extent of PCB impacts by sampling 12 sites, ranging from the heavily industrialized upper portion of the HSC to Galveston Island. At each site, PCB concentrations and profiles were determined in three environmental compartments: sediment, water (polyethylene passive samplers), and fish tissue (resident Gulf killifish). We observed a steep gradient of PCB contamination, ranging from 4.00 to 100,000 ng/g organic carbon in sediment, 290-110,000 ng/g lipid in fish, and 4.5-2300 ng/g polyethylene in passive samplers. The PCB congener profiles in Gulf killifish at the most heavily contaminated sites were shifted toward the higher chlorinated PCBs and were highly similar to the sediment contamination profiles. In addition, while magnitude of total PCB concentrations in sediment and total fish contamination levels were highly correlated between sites, the relative PCB congener profiles in fish and passive samplers were more alike. This strong correlation, along with a lack of dependency of biota-sediment accumulation factors with total contamination rates, confirm the likely non-migratory nature of Gulf killifish and suggest their contamination levels are a good site-specific indicator of contamination in the Galveston Bay area. The spatial gradient of PCB contamination in Galveston Bay was evident in all three matrices studied and was observed effectively using Gulf killifish contamination as an environmentally relevant bioindicator of localized contamination in this environment.
Collapse
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Institute for Biomedical Studies, Baylor University, One Bear Place #97266, Waco TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #92766, Waco, TX, USA.
| | - Jennifer N Apell
- R.M. Parsons Laboratory, Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zach C Winfield
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - Jeffrey A Back
- Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #92766, Waco, TX, USA
| | - Sascha Usenko
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - Cole W Matson
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Institute for Biomedical Studies, Baylor University, One Bear Place #97266, Waco TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #92766, Waco, TX, USA.
| |
Collapse
|
12
|
Dubansky B, Rice CD, Barrois LF, Galvez F. Biomarkers of Aryl-hydrocarbon Receptor Activity in Gulf Killifish (Fundulus grandis) From Northern Gulf of Mexico Marshes Following the Deepwater Horizon Oil Spill. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:63-75. [PMID: 28695255 PMCID: PMC5785368 DOI: 10.1007/s00244-017-0417-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
Following the Deepwater Horizon oil spill, shorelines throughout the Barataria Basin of the northern Gulf of Mexico in Louisiana were heavily oiled for months with Macondo-252 oil, potentially impacting estuarine species. The Gulf killifish (Fundulus grandis) has been identified as a sentinel species for the study of site-specific effects of crude oil contamination on biological function. In November and December 2010, 4-5 months after the Macondo well was plugged and new oil was no longer spilling into the Gulf waters, Gulf killifish were collected across the Barataria Basin from 14 sites with varying degrees of oiling. Fish collected from oiled sites exhibited biological indications of exposure to oil, including increase in cytochrome P4501A (CYP1A) mRNA transcript and protein abundances in liver tissues. Immunohistochemistry revealed increases in gill, head kidney, and intestinal CYP1A protein at heavily oiled sites. Intestinal CYP1A protein was a sensitive indicator of exposure, indicating that intestinal tissue plays a key role in biotransformation of AHR ligands and that ingestion is a probable route of exposure, warranting additional consideration in future studies.
Collapse
Affiliation(s)
- Benjamin Dubansky
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, 225B Life Sciences Building, Denton, TX, 76203, USA.
- Department of Biological Sciences, Louisiana State University, 208 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Charles D Rice
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | | | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, 208 Life Sciences Building, Baton Rouge, LA, 70803, USA
| |
Collapse
|
13
|
Oziolor EM, Howard W, Lavado R, Matson CW. Induced pesticide tolerance results from detoxification pathway priming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:615-621. [PMID: 28259584 DOI: 10.1016/j.envpol.2017.02.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/23/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
Few studies in developmental toxicology have focused on whether early life contaminant exposure affects future susceptibility. Investigations in frogs suggested that early life exposure to a pesticide resulted in higher tolerance to a subsequent challenge. This led to the hypothesis that early-life stage exposures can alter phenotypically plastic traits during development, resulting in induced tolerance. Here, we used Gulf killifish (Fundulus grandis) to test the role of detoxification pathway priming in this inducible tolerance. In frogs, the induced tolerance is present five days after the end of the pre-exposure, but absent after a month. We show that a pre-exposure early in life with carbaryl, induces the activity of cytochrome P450 1A (CYP1A) and increases the ability of pre-exposed groups to metabolize carbaryl, likely because of activation of the aryl hydrocarbon receptor (AHR) pathway. Embryos pre-exposed to carbaryl had a 350-500% increase in CYP1A activity, threefold greater capacity to metabolize carbaryl and were more tolerant to a lethal challenge five days after the end of pre-exposure. However, ten days later the differences in CYP1A activity, metabolic capacity and tolerance between pre-exposed and control groups were no longer present. Thus, we conclude that the increase in tolerance observed in pre-exposed fish embryos was due to the activation of the AHR and other metabolic pathways, resulting in a prolonged increase in biotransformation capacity. This allowed individuals to more efficiently deal with subsequent chemical challenges for a short period after the initial pre-exposure. However, this induced tolerance was only short-lived due to the recycling of biotransformation enzymes in the cells as part of general cellular protein maintenance. These findings suggest that induced tolerance was likely due to induction of defense mechanisms during the duration of response to the original stressor, rather than a more permanent change in their ability to respond to future challenges.
Collapse
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Institute for Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| | - Willow Howard
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Cole W Matson
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Institute for Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
14
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
15
|
Lindberg CD, Jayasundara N, Kozal JS, Leuthner TC, Di Giulio RT. Resistance to polycyclic aromatic hydrocarbon toxicity and associated bioenergetic consequences in a population of Fundulus heteroclitus. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:435-448. [PMID: 28213827 PMCID: PMC5398948 DOI: 10.1007/s10646-017-1775-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 05/20/2023]
Abstract
Several locations in the Elizabeth River, VA, USA are highly contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the release of creosote mixtures from wood treatment facilities. Interestingly, some populations of Atlantic killifish (Fundulus heteroclitus) inhabiting the Elizabeth River (ER) are resistant to PAH-induced teratogenesis. However, evolutionary resistance to PAHs due to chronic PAH exposure is associated with reduced fitness and increased susceptibility to other environmental stressors in at least one PAH-resistant ER killifish population. More specifically, wild-caught and first generation PAH-resistant juvenile killifish have altered metabolic demands when compared to non-resistant fish. Herein, we investigated this association further by examining a previously under-studied population captured from the creosote-contaminated site Republic Creosoting (Rep). We assessed PAH toxicity and effects on energy metabolism in Rep killifish in comparison with killifish from the reference site Kings Creek (KC). Following exposures to simple and complex PAH mixtures, Rep killifish exhibited several phenotypes associated with PAH resistance including decreased incidences of developmental cardiovascular deformities and recalcitrant cytochrome P450 1A (CYP1A) activity. We evaluated bioenergetics in killifish embryos throughout development and found elevated basal oxygen consumption rates in Rep embryos relative to KC embryos. Furthermore, juvenile F1 Rep fish had significantly lower maximal metabolic rates and aerobic scopes than KC juveniles. These results suggest that populations of killifish that have adapted or evolved to withstand the toxicity associated with PAHs consequently have altered energetic metabolism or demands. Such consequences could result in an enhanced vulnerability to other environmental and anthropogenic stressors in PAH-resistant killifish.
Collapse
Affiliation(s)
- C D Lindberg
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708, USA.
| | - N Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - J S Kozal
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708, USA
| | - T C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708, USA
| | - R T Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
16
|
Peterson EK, Buchwalter DB, Kerby JL, LeFauve MK, Varian-Ramos CW, Swaddle JP. Integrative behavioral ecotoxicology: bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation. Curr Zool 2017; 63:185-194. [PMID: 29491976 PMCID: PMC5804166 DOI: 10.1093/cz/zox010] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
The fields of behavioral ecology, conservation science, and environmental toxicology individually aim to protect and manage the conservation of wildlife in response to anthropogenic stressors, including widespread anthropogenic pollution. Although great emphasis in the field of toxicology has been placed on understanding how single pollutants affect survival, a comprehensive, interdisciplinary approach that includes behavioral ecology is essential to address how anthropogenic compounds are a risk for the survival of species and populations in an increasingly polluted world. We provide an integrative framework for behavioral ecotoxicology using Tinbergen’s four postulates (causation and mechanism, development and ontogeny, function and fitness, and evolutionary history and phylogenetic patterns). The aims of this review are: 1) to promote an integrative view and re-define the field of integrative behavioral ecotoxicology; 2) to demonstrate how studying ecotoxicology can promote behavior research; and 3) to identify areas of behavioral ecotoxicology that require further attention to promote the integration and growth of the field.
Collapse
Affiliation(s)
- Elizabeth K Peterson
- Department of Biological Sciences, State University of New York-Albany, Albany, NY 12222, USA
| | - David B Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jacob L Kerby
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Matthew K LeFauve
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | | | - John P Swaddle
- Biology Department, Institute for Integrative Bird Behavior Studies, College of William & Mary, Williamsburg, VA 23187-8795, USA
| |
Collapse
|
17
|
Oziolor EM, Bickham JW, Matson CW. Evolutionary toxicology in an omics world. Evol Appl 2017; 10:752-761. [PMID: 29151868 PMCID: PMC5680431 DOI: 10.1111/eva.12462] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
Evolutionary toxicology is a young field that has grown rapidly in the past two decades. The potential of this field comes from the ability to link chemical contamination to multigenerational and population-wide effects in various species. The advancements and rapidly decreasing costs of -omic tools are improving the power and resolution of evolutionary toxicology studies. In this manuscript, we aim to address the trajectories and perspectives for conducting evolutionary toxicology studies with -omic approaches. We discuss the complementarity of using multiple -omic tools (genomics, eDNA, transcriptomics, proteomics, and metabolomics) for utility in understanding the toxicological relevance of adaptive responses in populations. In addition, we discuss phenotypic plasticity and its relevance to transcriptomic studies in toxicology. As evolutionary toxicology grows and expands its capacity to link toxicology with population-wide end points, we emphasize the applications of such studies in answering questions about ecological and population health, as well as future applicability to regulation. Thus, we aim to emphasize the enormous potential for evolutionary toxicology in an -omics world and give perspectives on the directions of future investigations.
Collapse
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Science Center for Reservoir and Aquatic Systems Research (CRASR), and the Institute for Biomedical Studies Baylor University Waco TX USA
| | - John W Bickham
- Department of Wildlife and Fisheries Science Texas A&M University College Station TX USA
| | - Cole W Matson
- Department of Environmental Science Center for Reservoir and Aquatic Systems Research (CRASR), and the Institute for Biomedical Studies Baylor University Waco TX USA
| |
Collapse
|
18
|
Burggren WW, Dubansky B, Bautista NM. Cardiovascular Development in Embryonic and Larval Fishes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|