1
|
Zhang Y, Li Y, Gao N, Gong Y, Shi W, Wang X. Transcriptome and Metabolome Analyses Reveal Perfluorooctanoic Acid-Induced Kidney Injury by Interfering with PPAR Signaling Pathway. Int J Mol Sci 2023; 24:11503. [PMID: 37511261 PMCID: PMC10380573 DOI: 10.3390/ijms241411503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is widely used in aviation science and technology, transportation, electronics, kitchenware, and other household products. It is stable in the environment and has potential nephrotoxicity. To investigate the effect of PFOA exposure during pregnancy on the kidneys of offspring mice, a total of 20 mice at day 0 of gestation were randomly divided into two groups (10 mice in each group), and each group was administered 0.2 mL of PFOA at a dose of 3.5 mg/kg or deionized water by gavage during gestation. The kidney weight, kidney index, histopathological observation, serum biochemistry, transcriptomics, and metabolomics of the kidneys of the 35-day offspring mice were analyzed. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels in the kidney were measured. Transcriptome analysis results showed that 387 genes were up-regulated and 283 genes were down-regulated compared with the control group. These differentially expressed genes (DEGs) were mainly concentrated in the peroxisome-proliferator-activated receptor (PPAR) signaling pathway and circadian rhythm. Compared with the control group, 64 and 73 metabolites were up- and down-regulated, respectively, in the PFOA group. The altered metabolites were mainly enriched in the biosynthesis of unsaturated fatty acids. PFOA can affect the expression levels of circadian rhythm-related genes in the kidneys of offspring mice, and this change is influenced by the PPAR signaling pathway. PFOA causes oxidative stress in the kidneys, which is responsible for significant changes in metabolites associated with the biosynthesis of unsaturated fatty acids.
Collapse
Affiliation(s)
- Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.Z.); (N.G.); (W.S.)
| | - Yang Li
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.Z.); (N.G.); (W.S.)
| | - Nana Gao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.Z.); (N.G.); (W.S.)
| | - Yinglan Gong
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.Z.); (N.G.); (W.S.)
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.Z.); (N.G.); (W.S.)
- Veterinary Biological Technology Innovation Center of Hebei Province, College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.Z.); (N.G.); (W.S.)
- Veterinary Biological Technology Innovation Center of Hebei Province, College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
2
|
Rodrigues JA, Silva M, Araújo R, Madureira L, Soares AMVM, Freitas R, Gil AM. The influence of temperature rise on the metabolic response of Ruditapes philippinarum clams to 17-α-ethinylestradiol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162898. [PMID: 36934939 DOI: 10.1016/j.scitotenv.2023.162898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Untargeted Nuclear Magnetic Resonance metabolomics was employed to study the effects of warming conditions (17-21 °C) and exposure to 17-α-ethinylestradiol (EE2) on the polar metabolome of Ruditapes philippinarum clams, to identify metabolic markers for monitoring/prediction of deviant environmental conditions. Warming alone triggered changes in alanine/aspartate/glutamate, aromatic amino acids, taurine/hypotaurine and homarine/trigonelline pathways, as well as in energy metabolism, suggesting osmoregulatory adaptations and glycolytic/tricarboxylic acid (TCA) cycle activation, possibly accompanied to some extent by gluconeogenesis to preserve glycogen reserves. At 17 °C, the lowest EE2 concentration (5 ng/L) specifically engaged branched-chain and aromatic amino acids to activate the glycolysis/TCA cycle. Notably, a partial metabolic recovery was observed at 25 ng/L, whereas higher EE2 concentrations (125 and 625 ng/L) again induced significant metabolic disturbances. These included enhanced glycogen biosynthesis and increased lipid reserves, sustained by low-level glutathione-based antioxidative mechanisms that seemed active. At 21 °C, response to EE2 was notably weak at low/intermediate concentrations, becoming particularly significant at the highest EE2 concentration (625 ng/L), suggesting higher protection capacity of Ruditapes philippinarum clams under warming conditions. At 625 ng/L, disturbances in alanine/aspartate/glutamate and taurine/hypotaurine metabolisms were observed, with no evidence of enhanced carbohydrate/protein catabolism. This low energy function profile was accompanied by marked antioxidative mechanisms and choline compounds modulation for cell membrane protection/repair. These results help monitor clams´ response to temperature rise and EE2 exposure, paving the way for future effective guidance and prediction of environmental damaging effects.
Collapse
Affiliation(s)
- João A Rodrigues
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Araújo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Leonor Madureira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M Gil
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Zhao X, Wang Q, Li X, Xu H, Ren C, Yang Y, Xu S, Wei G, Duan Y, Tan Z, Fang Y. Norgestrel causes digestive gland injury in the clam Mactra veneriformis: An integrated histological, transcriptomics, and metabolomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162110. [PMID: 36764532 DOI: 10.1016/j.scitotenv.2023.162110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The potential adverse effects of progestins on aquatic organisms, especially non-target species, are of increasing concern worldwide. However, the effect and mechanism of progestin toxicity on aquatic invertebrates remain largely unexplored. In the present study, clams Mactra veneriformis were exposed to norgestrel (NGT, 0, 10, and 1000 ng/L), the dominant progestin detected in the aquatic environment, for 21 days. NGT accumulation, histology, transcriptome, and metabolome were assessed in the digestive gland. The bioconcentration factor (BCF) was 386 and 268 in the 10 ng/L NGT group and 1000 ng/L NGT group, respectively, indicating efficient accumulation of NGT in the clams. Histological analysis showed that NGT led to the swelling of epithelial cells and blurring of the basement membrane in the digestive gland. Differentially-expressed genes and KEGG pathway enrichment analysis using a transcriptomic approach suggested that NGT primarily disturbed the detoxification system, antioxidant defense, carbohydrate and amino acid metabolism, and steroid hormone metabolism, which was consistent with the metabolites analyzed using a metabolomic approach. Furthermore, we speculated that the oxidative stress caused by NGT resulted in histological damage to the digestive gland. This study showed that NGT caused adverse effects in the clams and sheds light on the mechanisms of progestin interference in aquatic invertebrates.
Collapse
Affiliation(s)
- Xiaoran Zhao
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiangfei Li
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Hua Xu
- Yantai Ecological Environment Monitoring Center, Shandong Province, Yantai 264010, PR China
| | - Chuanbo Ren
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Yanyan Yang
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Shuhao Xu
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Guoxing Wei
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yujun Duan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Zhitao Tan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
4
|
Wang D, Liu B. Proteomics reveals the changes in energy metabolism associated with reproduction in the clam Meretrix petechialis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100954. [PMID: 34952325 DOI: 10.1016/j.cbd.2021.100954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Because reproduction requires a considerable energy investment that presents metabolic challenges to animals, there is growing scientific interest in the effects of reproduction on metabolism. Here, the proteome of the hepatopancreas from female and male clams (Meretrix petechialis) before and after spawning was obtained using iTRAQ-based proteome analysis. Forty-two DEPs and 37 DEPs were detected in the pre- and post-spawning comparison of females and males, respectively. KEGG pathway analysis was then performed to explore the function of the identified DEPs and the results showed that metabolic process was deeply affected by spawning. Carbohydrate metabolism was weakened after spawning, whereas protein and amino acid metabolism were enhanced. In addition, spawning induced more severe oxidative damage in females than in males, which may hinder muscle function in females. Finally, the total glucose and protein contents briefly increased after spawning and then recovered to the baseline level. Our results illustrate the overall differences and contribute to an improved understanding of the molecular mechanisms underlying energy changes in the clams during reproduction.
Collapse
Affiliation(s)
- Di Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000 Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Bernardeschi M, Guidi P, Palumbo M, Genovese M, Alfè M, Gargiulo V, Lucchesi P, Scarcelli V, Falleni A, Bergami E, Freyria FS, Bonelli B, Corsi I, Frenzilli G. Suitability of Nanoparticles to Face Benzo(a)pyrene-Induced Genetic and Chromosomal Damage in M. galloprovincialis. An In Vitro Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1309. [PMID: 34063431 PMCID: PMC8155950 DOI: 10.3390/nano11051309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
Benzo(a)pyrene (B(a)P) is a well-known genotoxic agent, the removal of which from environmental matrices is mandatory, necessitating the application of cleaning strategies that are harmless to human and environmental health. The potential application of nanoparticles (NPs) in the remediation of polluted environments is of increasing interest. Here, specifically designed NPs were selected as being non-genotoxic and able to interact with B(a)P, in order to address the genetic and chromosomal damage it produces. A newly formulated pure anatase nano-titanium (nano-TiO2), a commercial mixture of rutile and anatase, and carbon black-derived hydrophilic NPs (HNP) were applied. Once it had been ascertained that the NPs selected for the work did not induce genotoxicity, marine mussel gill biopsies were exposed in vitro to B(a)P (2 μg/mL), alone and in combination with the selected NPs (50 µg/mL nano-TiO2, 10 µg/mL HNP). DNA primary reversible damage was evaluated by means of the Comet assay. Chromosomal persistent damage was assessed on the basis of micronuclei frequency and nuclear abnormalities by means of the Micronucleus-Cytome assay. Transmission Electron Microscopy (TEM) was performed to investigate the mechanism of action exerted by NPs. Pure Anatase n-TiO2 was found to be the most suitable for our purpose, as it is cyto- and genotoxicity free and able to reduce the genetic and chromosomal damage associated with exposure to B(a)P.
Collapse
Affiliation(s)
- Margherita Bernardeschi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Patrizia Guidi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Mara Palumbo
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Massimo Genovese
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy;
| | - Michela Alfè
- Institute of Science and Technology for Sustainable Energy and Mobility STEMS-CNR, 80126 Naples, Italy; (M.A.); (V.G.)
| | - Valentina Gargiulo
- Institute of Science and Technology for Sustainable Energy and Mobility STEMS-CNR, 80126 Naples, Italy; (M.A.); (V.G.)
| | - Paolo Lucchesi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Vittoria Scarcelli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Alessandra Falleni
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Elisa Bergami
- Earth and Environmental Sciences and INSTM Local Unit, Department of Physical, University of Siena, 53100 Siena, Italy; (E.B.); (I.C.)
| | - Francesca S. Freyria
- INSTM Unit of Torino-Politecnico, Department of Applied Science and Technology, 10129 Politecnico di Torino, Italy; (F.S.F.); (B.B.)
| | - Barbara Bonelli
- INSTM Unit of Torino-Politecnico, Department of Applied Science and Technology, 10129 Politecnico di Torino, Italy; (F.S.F.); (B.B.)
| | - Ilaria Corsi
- Earth and Environmental Sciences and INSTM Local Unit, Department of Physical, University of Siena, 53100 Siena, Italy; (E.B.); (I.C.)
| | - Giada Frenzilli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| |
Collapse
|
6
|
López-Pedrouso M, Varela Z, Franco D, Fernández JA, Aboal JR. Can proteomics contribute to biomonitoring of aquatic pollution? A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115473. [PMID: 32882465 DOI: 10.1016/j.envpol.2020.115473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Aquatic pollution is one of the greatest environmental problems, and therefore its control represents one of the major challenges in this century. In recent years, proteomics has emerged as a powerful tool for searching protein biomarkers in the field of pollution biomonitoring. For biomonitoring marine contamination, there is a consensus that bivalves are preferred organisms to assess organic and inorganic pollutants. Thus, the bivalve proteome was intensively studied, particularly the mussel. It is well documented that heavy metal pollution and organic chemicals altered the structural proteins causing degradation of tissues of molluscs. Also, it is well known that proteins involved in stress oxidative such as glutathione and enzymes as catalase, superoxide dismutase or peroxisomes are overexpressed in response to contaminants. Additionally, using bivalves, other groups of proteins proposed as pollution biomarkers are the metabolic proteins. Even though other marine species are used to monitor the pollution, the presence of proteomic tools in these studies is scarce. Concerning freshwater pollution field, a great variety of animal species (fish and crustaceans) are used as biomonitors in proteomics studies compared to plants that are scarcely analysed. In fish species, proteins involved in stress oxidative such as heat shock family or proteins from lipid and carbohydrate metabolism were proposed as candidate biomarkers. On the contrary, for crustaceans there is a lack of proteomic studies individually assessing the contaminants. Novel scenarios, including emerging contaminants and new threats, will require proteomic technology for a systematic search of protein biomarkers and a greater knowledge at molecular level of those cellular pathways induced by contamination.
Collapse
Affiliation(s)
- M López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela, 15872, A Coruña, Spain.
| | - Z Varela
- CRETUS Institute, Department of Functional Biology, Ecology Unit, University of Santiago de Compostela, Santiago de Compostela, 15872, A Coruña, Spain
| | - D Franco
- Centro Tecnológico de La Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao Das Viñas, 32900, Ourense, Spain
| | - J A Fernández
- CRETUS Institute, Department of Functional Biology, Ecology Unit, University of Santiago de Compostela, Santiago de Compostela, 15872, A Coruña, Spain
| | - J R Aboal
- CRETUS Institute, Department of Functional Biology, Ecology Unit, University of Santiago de Compostela, Santiago de Compostela, 15872, A Coruña, Spain
| |
Collapse
|
7
|
Liang X, Martyniuk CJ, Simmons DBD. Are we forgetting the "proteomics" in multi-omics ecotoxicology? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100751. [PMID: 33142247 DOI: 10.1016/j.cbd.2020.100751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 07/19/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Proteomics plays a significant role in discerning the effects of chemical exposures in animal taxa. Multi-omics applications have become more pervasive in toxicology, however questions remain about whether proteomics is being utilized by the community to its full potential - are we placing too much stock in transcriptomics and other omics approaches for developing adverse outcome pathways? Proteins are more relevant than transcripts because they are direct mediators of the resulting phenotype. There is also rarely perfect stoichiometry between transcript and protein abundance and transcript abundance may not accurately predict physiologic response. Proteins direct all levels of phenotype: structural proteins dictate physical form, enzymes catalyze biochemical reactions, and proteins act as signaling proteins, antibodies, transporters, ion pumps, and transcription factors to control gene expression. Molecular initiating events (MIEs) of AOPs predominantly occur at the level of the protein (e.g. ligand-receptor binding) and proteomics can elucidate novel MIEs and mapping KEs in AOPs. This critical review highlights the need for proteomics in multi-omics studies in environmental toxicology and outlines steps required for inclusion and wider acceptance in chemical risk assessment. We also present case studies of multi-omics approaches that utilize proteomics and discuss some of the challenges and opportunities for proteomics in comparative ecotoxicology. Our intention is not to minimize the importance of other omics technologies, as each has strengths and limitations, but rather to encourage researchers to consider proteomics-based methods in multi-omics studies and AOP development.
Collapse
Affiliation(s)
- Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
8
|
Huang W, Zhu L, Zhao C, Chen X, Cai Z. Integration of proteomics and metabolomics reveals promotion of proliferation by exposure of bisphenol S in human breast epithelial MCF-10A cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136453. [PMID: 31945527 DOI: 10.1016/j.scitotenv.2019.136453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol S (BPS) has been reported to have similar estrogenic effects as bisphenol A (BPA). Considering the endocrine disrupting effects of BPS, in this study, we investigated the effects of BPS exposure on normal human breast epithelial cell line MCF-10A by using mass spectrometry (MS)-based metabolomics and quantitative proteomics. We found that exposure to BPS for 24 h altered the proliferation of MCF-10A cells in a hormetic manner with the highest proliferation rate at the dosage of 1 μM. A total of 200 proteins were identified to be significantly changed by 1 μM of BPS exposure. The upregulation of epidermal growth factor receptor (EGFR) and Ras/mTOR-related proteins implied that EGFR-mediated pathways were involved in BPS-induced proliferation of MCF-10A cells. In addition, several proliferation-related protein markers were found to be elevated, such as MKI67 and CDH1, further indicating the promotion of proliferation by low dose of BPS exposure. Besides, 35 endogenous metabolites were found to be significantly changed. The joint pathway analysis of the altered metabolites and proteins suggested changes in pathways of tricarboxylic acid (TCA) cycle, purine metabolism, pyruvate metabolism and lipid metabolism, which were involved in sustaining cell proliferation and cellular signal transduction. Taken together, this study provides insights into the effects and the potential mechanisms of BPS on estrogen receptor α-negative normal breast cell line MCF-10A, broadening our knowledge about the risk of using BPS as the alternative of BPA.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Department of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiangfeng Chen
- Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Centre, Qilu University of Technology, Shandong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
9
|
Ding J, Chen S, Qu M, Wang Y, Di Y. Trophic transfer affects cytogenetic and antioxidant responses of the mussel Mytilus galloprovincialis to copper and benzo(α)pyrene. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104848. [PMID: 32056703 DOI: 10.1016/j.marenvres.2019.104848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The impacts of environmental pollutants on marine organisms can be determined by the routes of exposure. Various routes of exposure, including dietary exposure and waterborne exposure with or without feeding, were applied to study the cytogenetic responses in marine mussels Mytilus galloprovincials to typical pollutants, BaP (53.74 ± 19.79 μg/L) and Cu (47.38 ± 3.10 μg/L). The increased DNA strand breaks and micronucleus formation were found in haemocytes of mussels via the dietary exposure, indicating the vital role of trophic transfer in toxicity induction. The deeper exploration to relate BaP induced cytogenetic alterations with key antioxidant defense factors, SOD and GST, was performed under different exposure routes. The results revealed the significantly inhibited SOD activity via the trophic transfer, suggesting more direct or prompt role of SOD in antioxidant defense. On contrary, gene expressions of both sod and gst were up-regulated upon all routes of exposures, and showed negative correlation with enzyme activities. The results suggested the asynchronous regulation of studied antioxidant factors at transcriptional and enzyme functional level in mussels upon the change of exposure routes. The study brings out the first observation of trophic transfer influenced cytogenetic and antioxidant responses to pollutants and their alterative risk to marine organisms.
Collapse
Affiliation(s)
- Jiawei Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China
| | - Siyu Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China
| | - Mengjie Qu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China
| | - Yi Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China
| | - Yanan Di
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China.
| |
Collapse
|
10
|
Occurrence and potential health risks assessment of polycyclic aromatic hydrocarbons (PAHs) in different tissues of bivalves from Hainan Island, China. Food Chem Toxicol 2020; 136:111108. [DOI: 10.1016/j.fct.2019.111108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 11/22/2022]
|
11
|
Martins C, Dreij K, Costa PM. The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of "Omics" Approaches Directed to Toxicant Mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234718. [PMID: 31779274 PMCID: PMC6926496 DOI: 10.3390/ijerph16234718] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
The last decade witnessed extraordinary advances in “omics” methods, particularly transcriptomics, proteomics and metabolomics, enabling toxicologists to integrate toxicokinetics and toxicodynamics with mechanistic insights on the mode-of-action of noxious chemicals, single or combined. The toxicology of mixtures is, nonetheless, a most challenging enterprise, especially for environmental toxicologists and ecotoxicologists, who invariably deal with chemical mixtures, many of which contain unknowns. Despite costs and demanding computations, the systems toxicology framework, of which “omics” is a major component, endeavors extracting adverse outcome pathways for complex mixtures. Still, the interplay between the multiple components of gene expression and cell metabolism tends to be overlooked. As an example, the proteome allocates DNA methyltransferases whose altered transcription or loss of function by action of chemicals can have a global impact on gene expression in the cell. On the other hand, chemical insult can produce reactive metabolites and radicals that can intercalate or bind to DNA as well as to enzymes and structural proteins, compromising their activity. These examples illustrate the importance of exploring multiple “omes” and the purpose of “omics” and multi-“omics” for building truly predictive models of hazard and risk. Here we will review the state-of-the-art of toxicogenomics highlighting successes, shortcomings and perspectives for next-generation environmental toxicologists.
Collapse
Affiliation(s)
- Carla Martins
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden;
- Correspondence: (C.M.); (P.M.C.); Tel.: +351-212-948-300 (ext. 11103) (P.M.C.)
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden;
| | - Pedro M. Costa
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Correspondence: (C.M.); (P.M.C.); Tel.: +351-212-948-300 (ext. 11103) (P.M.C.)
| |
Collapse
|
12
|
Lu Q, Chen K, Long Y, Liang X, He B, Yu L, Ye J. Benzo(a)pyrene degradation by cytochrome P450 hydroxylase and the functional metabolism network of Bacillus thuringiensis. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:329-337. [PMID: 30530025 DOI: 10.1016/j.jhazmat.2018.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/21/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
The relationship between benzo(a)pyrene biodegradation and certain target biomolecules has been investigated. To regulate the degradation process, the associated metabolism network must be clarified. To this end, benzo(a)pyrene degradation, carbon substrate metabolism and exometabolomic mechanism of Bacillus thuringiensis were analyzed. Benzo(a)pyrene was degraded through hydroxylation catalyzed by cytochrome P450 hydroxylase. After the treatment of 0.5 mg L-1 of benzo(a)pyrene by 0.2 g L-1 of cells for 9 d, biosorption and degradation efficiencies were measured at approximately 90% and 80%, respectively. During this process, phospholipid synthesis, glycogen, asparagine, arginine, itaconate and xylose metabolism were significantly downregulated, while glycolysis, pentose phosphate pathway, citrate cycle, amino sugar and nucleotide sugar metabolism were significantly upregulated. These findings offer insight into the biotransformation regulation of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Qiying Lu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, Guangdong, China
| | - Kaiyun Chen
- Child Developmental-Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan Long
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xujun Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Baoyan He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Lehuan Yu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, Guangdong, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Qu M, Ding J, Wang Y, Chen S, Zhang Y, Di Y. Genetic impacts induced by BaP and Pb in Mytilus coruscus: Can RAPD be a validated tool in genotoxicity evaluation both in vivo and in vitro? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:529-538. [PMID: 30476815 DOI: 10.1016/j.ecoenv.2018.11.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Benzo(α)pyrene (BaP) and lead (Pb) are common pollutants discharged greatly in ocean and causing detrimental impacts on marine organisms. Although mussels are one of the most prominent and frequently studied biological models, the research on their genomic alterations induced by the mixture of two totally different chemicals, is still rare. In present study, local marine mussels Mytilus coruscus were exposed in vivo to BaP (53.74 ± 19.79 μg/L), Pb (2.58 ± 0.11 mg/L) and their mixture for 6 days. The genotoxic damages were assessed by comet assay, micronucleus (MNi) test, and random amplified polymorphic DNA (RAPD) analysis. Significantly increased though transitory genomic damage was investigated after the exposure and showed consistency using various detecting methods. Additive genotoxicity was only found after 3 days combined exposure by means of MNi test, suggesting that BaP and Pb may play with alternative biological targets during metabolism and/or interaction with the genome. The geno-stability and the recovery capability were further detected both in vivo and in vitro after challenged by BaP. RAPD results showed coherence in BaP induced genotoxicity, together with time-specific alterations. The genomic instability was found to recover in both in vivo and in vitro exposure scenarios in present study. To our knowledge, this is the first study to focus on the genotoxicitiy induced by BaP, Pb and their mixture by multiple detecting techniques. The attempt to utilize model pollutants and marine organism to validate the potential value of RAPD analysis highlighted that it might be a useful tool in the research of genotoxicology, especially on the effect-mechanism interplay at genetic level.
Collapse
Affiliation(s)
- Mengjie Qu
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Jiawei Ding
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Yi Wang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Siyu Chen
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Yifei Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Yanan Di
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China.
| |
Collapse
|
14
|
McDougall C, Hammond MJ, Dailey SC, Somorjai IML, Cummins SF, Degnan BM. The evolution of ependymin-related proteins. BMC Evol Biol 2018; 18:182. [PMID: 30514200 PMCID: PMC6280359 DOI: 10.1186/s12862-018-1306-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
Background Ependymins were originally defined as fish-specific secreted glycoproteins involved in central nervous system plasticity and memory formation. Subsequent research revealed that these proteins represent a fish-specific lineage of a larger ependymin-related protein family (EPDRs). EPDRs have now been identified in a number of bilaterian animals and have been implicated in diverse non-neural functions. The recent discoveries of putative EPDRs in unicellular holozoans and an expanded EPDR family with potential roles in conspecific communication in crown-of-thorns starfish suggest that the distribution and diversity of EPDRs is significantly broader than currently understood. Results We undertook a systematic survey to determine the distribution and evolution of EPDRs in eukaryotes. In addition to Bilateria, EPDR genes were identified in Cnidaria, Placozoa, Porifera, Choanoflagellatea, Filasterea, Apusozoa, Amoebozoa, Charophyta and Percolozoa, and tentatively in Cercozoa and the orphan group Malawimonadidae. EPDRs appear to be absent from prokaryotes and many eukaryote groups including ecdysozoans, fungi, stramenopiles, alveolates, haptistans and cryptistans. The EPDR family can be divided into two major clades and has undergone lineage-specific expansions in a number of metazoan lineages, including in poriferans, molluscs and cephalochordates. Variation in a core set of conserved residues in EPDRs reveals the presence of three distinct protein types; however, 3D modelling predicts overall protein structures to be similar. Conclusions Our results reveal an early eukaryotic origin of the EPDR gene family and a dynamic pattern of gene duplication and gene loss in animals. This research provides a phylogenetic framework for the analysis of the functional evolution of this gene family. Electronic supplementary material The online version of this article (10.1186/s12862-018-1306-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carmel McDougall
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, Australia
| | - Michael J Hammond
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Simon C Dailey
- Gatty Marine Laboratory, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Ildiko M L Somorjai
- Gatty Marine Laboratory, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Scott F Cummins
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
15
|
Sun S, Guo Z, Fu H, Ge X, Zhu J, Gu Z. Based on the Metabolomic Approach the Energy Metabolism Responses of Oriental River Prawn Macrobrachium nipponense Hepatopancreas to Acute Hypoxia and Reoxygenation. Front Physiol 2018; 9:76. [PMID: 29686619 PMCID: PMC5900017 DOI: 10.3389/fphys.2018.00076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia represents a major physiological challenge for prawns and is a problem in aquaculture. Therefore, an understanding of the metabolic response mechanism of economically important prawn species to hypoxia and re-oxygenation is essential. However, little is known about the intrinsic mechanisms by which the oriental river prawn Macrobrachium nipponense copes with hypoxia at the metabolic level. In this study, we conducted gas chromatography-mass spectrometry-based metabolomics studies and assays of energy metabolism-related parameters to investigate the metabolic mechanisms in the hepatopancreas of M. nipponense in response to 2.0 O2/L hypoxia for 6 and 24 h, and reoxygenation for 6 h following hypoxia for 24 h. Prawns under hypoxic stress displayed higher glycolysis-related enzyme activities and lower mRNA expression levels of aerobic respiratory enzymes than those in the normoxic control group, and those parameters returned to control levels in the reoxygenated group. Our results showed that hypoxia induced significant metabolomic alterations in the prawn hepatopancreas within 24 h. The main metabolic alterations were depletion of amino acids and 2-hydroxybutanoic acid and accumulation of lactate. Further, the findings indicated that hypoxia disturbed energy metabolism and induced antioxidant defense regulation in prawns. Surprisingly, recovery from hypoxia (i.e., reoxygenation) significantly affected 25 metabolites. Some amino acids (valine, leucine, isoleucine, lysine, glutamate, and methionine) were markedly decreased compared to the control group, suggesting that increased degradation of amino acids occurred to provide energy in prawns at reoxygenation conditions. This study describes the acute metabolomic alterations that occur in prawns in response to hypoxia and demonstrates the potential of the altered metabolites as biomarkers of hypoxia.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Sciences, Nanning, China
| | - Hongtuo Fu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|