1
|
Yang Z, Wong NK, Mao F, Wu S, Yi W, Yu Z, Zhang Y. Carnosine Synthase ( TsATPGD) Alleviates Lipid Peroxidation Under Transcriptional Control by an Nfe2-like Gene in Tridacna Squamosa. Antioxidants (Basel) 2024; 13:1351. [PMID: 39594493 PMCID: PMC11591149 DOI: 10.3390/antiox13111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
As an important mollusk in reef ecosystems, Tridacna squamosa forms pro-survival symbiotic relationships that hinge on an exquisite redox equilibrium between the host and the photosynthetic symbiont, zooxanthellae. The exact regulatory mechanisms thereof remain poorly understood. In this study, a novel Nfe2-like transcription factor in T. squamosa was identified and characterized with respect to its antioxidant and cytoprotective roles. Gene structure and phylogenetic analysis reveal that T. squamosa possesses a single transcription factor TsNfe2l in contrast to mammalian Nfe2l1 (Nrf1) and Nfe2l2 (Nrf2), belonging to protein members of the bZIP-NFE2 subfamily and functionally resembling the mammalian Nfe2l1. A conserved bZIP domain permits its binding to the antioxidant response element (ARE) in vitro and in HEK293T cells. Further analyses such as promoter prediction suggest that TsNfe2l target genes engage mainly in the regulation of multiple enzymes involved in antioxidation and allied pathways. Notably, TsNfe2l transcriptionally upregulates carnosine synthase (TsATPGD), which subsequently produces L-carnosine abundantly to shield cells from oxidative damage. Moreover, the blockage of TsNfe2l nucleic acid binding reduced the expression of TsATPGD and L-carnosine content in the gill, resulting in elevated lipid peroxidation. Collectively, our findings establish novel molecular insight into TsNfe2l as a critical regulator of redox homeostasis in T. squamosa through carnosine synthesis.
Collapse
Affiliation(s)
- Zhuo Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.Y.); (F.M.); (S.W.); (W.Y.); (Z.Y.)
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Chinese Academy of Sciences, Sanya 572000, China
| | - Nai-Kei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China;
| | - Fan Mao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.Y.); (F.M.); (S.W.); (W.Y.); (Z.Y.)
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Chinese Academy of Sciences, Sanya 572000, China
| | - Siwei Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.Y.); (F.M.); (S.W.); (W.Y.); (Z.Y.)
| | - Wenjie Yi
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.Y.); (F.M.); (S.W.); (W.Y.); (Z.Y.)
| | - Ziniu Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.Y.); (F.M.); (S.W.); (W.Y.); (Z.Y.)
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Chinese Academy of Sciences, Sanya 572000, China
| | - Yang Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.Y.); (F.M.); (S.W.); (W.Y.); (Z.Y.)
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
2
|
Geng Q, Zou L, Guo M, Peng J, Li F, Bi Y, Jiang S, Qin H, Tan Z. Insights into the combined toxicity and mechanisms of BDE-47 and PFOA in marine blue mussel: An integrated study at the physiochemical and molecular levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106999. [PMID: 38875954 DOI: 10.1016/j.aquatox.2024.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
The coexistence of multiple emerging contaminants imposes a substantial burden on the ecophysiological functions in organisms. The combined toxicity and underlying mechanism requires in-depth understanding. Here, marine blue mussel (Mytilus galloprovincialis L.) was selected and exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and perfluorooctanoic acid (PFOA) individually and in combination at environmental related concentrations to elucidate differences in stress responses and potential toxicological mechanisms. Characterization and comparison of accumulation, biomarkers, histopathology, transcriptomics and metabolomics were performed. Co-exposure resulted in differential accumulation patterns, exacerbated histopathological alterations, and different responses in oxidative stress and biomarkers for xenobiotic transportation. Moreover, the identified differentially expressed genes (DEGs) and differential metabolites (DEMs) in mussels were found to be annotated to different metabolic pathways. Correlation analyses further indicated that DEGs and DEMs were significantly correlated with the above biomarkers. BDE-47 and PFOA altered the genes and metabolites related to amino acid metabolism, energy and purine metabolism, ABC transporters, and glutathione metabolism to varying degrees, subsequently inducing accumulation differences and combined toxicity. Furthermore, the present work highlighted the pivotal role of Nrf2-keap1 detoxification pathway in the acclimation of M. galloprovincialis to reactive oxygen species (ROS) stress induced by BDE-47 and PFOA. This study enabled more comprehensive understanding of combined toxic mechanism of multi emerging contaminants pollution.
Collapse
Affiliation(s)
- Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Liang Zou
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yujie Bi
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shuqi Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hanlin Qin
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
4
|
Yao R, Qiu L, Zhu L, Chen X, Zhai J, Wang W, Qi P, Liao Z, Buttino I, Yan X, Guo B. The Functional Significance of McMafF_G_K in Molluscs: Implications for Nrf2-Mediated Oxidative Stress Response. Int J Mol Sci 2023; 24:16800. [PMID: 38069123 PMCID: PMC10706432 DOI: 10.3390/ijms242316800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal regulator of antioxidant gene expression in mammals, forming heterodimer complexes with small Maf proteins through its BZip domain. However, the underlying mechanism of Nrf2 action in molluscs remains poorly understood. The thick shell mussel, Mytilus coruscus, represents a model organism for the marine environment and molluscs interaction research. In this study, we used in silico cloning to obtain a small Maf homologue called McMafF_G_K from M. coruscus. McMafF_G_K possesses a typical BZip domain, suggesting its affiliation with the traditional small Maf family and its potential involvement in the Nrf2 signaling pathway. Transcriptional analysis revealed that McMafF_G_K exhibited a robust response to benzo[a]pyrene (Bap) in the digestive glands. However, this response was down-regulated upon interference with McMafF_G_K-siRNA. Interestingly, the expression levels of Nrf2, NAD(P)H: quinone oxidoreductase (NQO-1), and Glutathione Peroxidase (GPx), which are key players in oxidative stress response, showed a positive correlation with McMafF_G_K in digested adenocytes of M. coruscus. Furthermore, in vitro analysis of antioxidant capacity in digestive gland cells demonstrated that Bap exposure led to an increase in reactive oxygen species (ROS) levels, accompanied by an elevation in total antioxidant capacity (T-AOC), potentially counterbalancing the excessive ROS. Strikingly, transfection of McMafF_G_K siRNA resulted in a significant rise in ROS level and a down-regulation of T-AOC level. To validate the functional relevance of McMafF_G_K, a glutathione S-transferase (GST) pull-down assay confirmed its interaction with McNrf2, providing compelling evidence of their protein interaction. This study significantly contributes to our understanding of the functional role of McMafF_G_K in the Nrf2 signaling pathway and sheds light on its potential as a target for further research in oxidative stress response.
Collapse
Affiliation(s)
- Ronghui Yao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Xinglu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Jiaying Zhai
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Weifeng Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro n.38, 57122 Livorno, Italy;
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| |
Collapse
|
5
|
Qiu L, Chen X, Guo B, Liao Z, Buttino I, Yan X, Qi P. Unraveling the protective role of Nrf2 in molluscs: Insights into mitochondrial and apoptosis pathways in the defense against Bap-induced oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106728. [PMID: 37837868 DOI: 10.1016/j.aquatox.2023.106728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Benzopyrene (Bap) is a major constituent of petroleum pollutants commonly found in aquatic environments, and its mutagenic and carcinogenic properties have adverse effects on aquatic organisms' development, growth, and reproduction. The antioxidant defense system element, NF-E2-related factor 2 (Nrf2), has been linked to the oxidative stress response in marine invertebrates exposed to toxic substances. In a previous study, a novel Nrf2 homologue, McNrf2, was identified in mussel Mytilus coruscus, a significant model marine molluscs in ecotoxicology studies. McNrf2 showed the potential to trigger an antioxidant defense against oxidative stress induced by Bap. Here, we employed an Nrf2 overexpression and inhibition model using SFN and ML385 as Nrf2 inducer and inhibitor, respectively. Next, immunofluorescence technique was used to evaluate the nuclear activation of Nrf2 induced by Bap-mediated oxidative stress. Transmission electron microscopy revealed that overexpression of Nrf2 could maintain the quantity and structural integrity of mitochondria, while flow cytometry analysis showed that Nrf2 could alleviate Bap-induced cellular apoptosis. These findings suggest that Nrf2 can protect molluscs from Bap-induced oxidative stress through the mitochondria and apoptosis pathways, providing a novel perspective on Nrf2's antioxidant function.
Collapse
Affiliation(s)
- Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Xinglu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedron.38, Livorno 57122 Italy
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
6
|
Qiu L, Chen X, Zhu L, Yao R, Qi P. ChIP-seq identifies McSLC35E2 as a novel target gene of McNrf2 in Mytilus coruscus, highlighting its role in the regulation of oxidative stress response in marine mollusks. Front Physiol 2023; 14:1282900. [PMID: 37869713 PMCID: PMC10587546 DOI: 10.3389/fphys.2023.1282900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) plays a crucial role in the oxidative regulatory process, which could trigger hundreds of antioxidant elements to confront xenobiotics. In the previous study, we identified Nrf2 from the marine mussel Mytilus coruscus, and the findings demonstrated that McNrf2 effectively protected the mussels against oxidative stress induced by benzopyrene (Bap). In order to delve deeper into the underlying mechanism, we utilized Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) technology to systematically identify potential novel target genes of McNrf2. A total of 3,465 potential target genes were screened, of which 219 owned binding sites located within the promoter region. During subsequent experimental verification, it was found that McSLC35E2, a candidate target gene of McNrf2, exhibited negative regulation by McNrf2, as confirmed through dual luciferase and qRT-PCR detection. Further, the enzyme activity tests demonstrated that McNrf2 could counteract Bap induced oxidative stress by inhibiting McSLC35E2. The current study provides valuable insights into the application of ChIP-seq technology in the research of marine mollusks, advancing our understanding of the key role of Nrf2 in antioxidant defense mechanisms, and highlighting the significance of SLC35E2 in the highly sophisticated regulation of oxidative stress response in marine invertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
7
|
Chen X, Qiu L, Si X, Zhang X, Guo B, Liao Z, Yan X, Qi P. Exploring the Role of a Novel Interleukin-17 Homolog from Invertebrate Marine Mussel Mytilus coruscus in Innate Immune Response: Is Negative Regulation by Mc-Novel_miR_145 the Key? Int J Mol Sci 2023; 24:ijms24065928. [PMID: 36983002 PMCID: PMC10055819 DOI: 10.3390/ijms24065928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Interleukin-17 (IL-17) represents a class of proinflammatory cytokines involved in chronic inflammatory and degenerative disorders. Prior to this study, it was predicted that an IL-17 homolog could be targeted by Mc-novel_miR_145 to participate in the immune response of Mytilus coruscus. This study employed a variety of molecular and cell biology research methods to explore the association between Mc-novel_miR_145 and IL-17 homolog and their immunomodulatory effects. The bioinformatics prediction confirmed the affiliation of the IL-17 homolog with the mussel IL-17 family, followed by quantitative real-time PCR assays (qPCR) to demonstrate that McIL-17-3 was highly expressed in immune-associated tissues and responded to bacterial challenges. Results from luciferase reporter assays confirmed the potential of McIL-17-3 to activate downstream NF-κb and its targeting by Mc-novel_miR_145 in HEK293 cells. The study also produced McIL-17-3 antiserum and found that Mc-novel_miR_145 negatively regulates McIL-17-3 via western blotting and qPCR assays. Furthermore, flow cytometry analysis indicated that Mc-novel_miR_145 negatively regulated McIL-17-3 to alleviate LPS-induced apoptosis. Collectively, the current results showed that McIL-17-3 played an important role in molluscan immune defense against bacterial attack. Furthermore, McIL-17-3 was negatively regulated by Mc-novel_miR_145 to participate in LPS-induced apoptosis. Our findings provide new insights into noncoding RNA regulation in invertebrate models.
Collapse
Affiliation(s)
- Xinglu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Xirui Si
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Xiaolin Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| |
Collapse
|
8
|
Stenvinkel P, Shiels PG, Johnson RJ. Lessons from evolution by natural selection: An unprecedented opportunity to use biomimetics to improve planetary health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116981. [PMID: 36508982 DOI: 10.1016/j.jenvman.2022.116981] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Planetary health embraces the concept that long-term human welfare depends on the well-being of its ecological systems. Current practices, however, have often ignored this concept and have led to an anthropocentric world, with the consequence of increased greenhouse gas emissions, heat stress, lack of clean water and pollution, that are threatening the environment as well as the health and life of Homo sapiens and many other species. One consequence of environmental stressors has been the stimulation of inflammatory and oxidative stress that may not only promote common lifestyle diseases, but the ageing process. Despite the harshness of the current reality, treatment opportunities may exist 'in our backyard'. Biomimicry is an emerging field of research that explores how nature is structured and aims to mimic ingenious solutions that have evolved in nature for different applications that benefit human life. As nature always counteracts excesses from within, biodiversity could be a source of solutions that have evolved through the natural selection of animal species that have survived polluted, warm, and arid environments - i.e. the same presumptive changes that now threaten human health. One example from the emerging science suggests that animals use the cytoprotective Nrf2 antioxidant pathway to combat environmental stress and this may be a case example that we can apply to better human health. Learning from nature may provide opportunities for environmental management and solutions to the most challenging issue that face the future of the planet.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Paul G Shiels
- School of Molecular Biosystems, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, 12700 East 19th Ave, RC-2 Research Building, Rm 7012, Mail Stop C281, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Zhao J, Dong Z, Zhu L, Song W, Qi P. An Interleukin-17 Isoform from Thick Shell Mussel Mytilus coruscus Serves as a Mediator of Inflammatory Response. Molecules 2023; 28:molecules28041806. [PMID: 36838794 PMCID: PMC9965057 DOI: 10.3390/molecules28041806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
The inflammatory cytokine interleukin-17 (IL17) plays an important role in innate immunity by binding to its receptors (IL17Rs) to activate immune defense signals. To date, information on members of the IL17 family is still very limited in molluscan species. Here, a novel member of the IL17 family was identified and characterized from thick shell mussel Mytilus coruscus, and this gene was designated as McIL17-1 by predicting structural domains and phylogenetic analysis. McIL17-1 transcripts existed in all examined tissues with high expression levels in gills, hemocytes and digestive glands. After the stimuli of different pathogen associated molecular patterns (PAMPs) for 72 h, transcriptional expression of McIL17-1 was significantly upregulated, except for poly I:C stimulation. Cytoplasm localization of McIL17-1 was shown in HEK293T cells by fluorescence microscopy. Further, in vivo and in vitro assays were performed to evaluate the potential function of McIL17-1 played in immune response. McIL17-1 was either knocked down or overexpressed in vivo through RNA inference (RNAi) and recombinant protein injection, respectively. With the infection of living Vibrio alginolyticus, a high mortality rate was exhibited in the McIL17-1 overexpressed group compared to the control group, while a lower mortality rate was observed in the McIL17-1 knocked down group than control group. In vitro, the flow cytometric analysis showed that the apoptosis rate of McIL17-1 inhibited hemocytes was significantly lower than that of the control group after lipopolysaccharide stimulation. These results collectively suggested that the newly identified IL17 isoform is involved in the inflammatory response to bacterial infection in M. coruscus.
Collapse
|
10
|
Bastolla CLV, Saldaña-Serrano M, Lima D, Mattos JJ, Gomes CHAM, Cella H, Righetti BPH, Ferreira CP, Zacchi FL, Bícego MC, Taniguchi S, Bainy ACD. Molecular changes in oysters Crassostrea gigas (Thunberg, 1793) from aquaculture areas of Santa Catarina Island bays (Florianópolis, Brazil) reveal anthropogenic effects. CHEMOSPHERE 2022; 307:135735. [PMID: 35868530 DOI: 10.1016/j.chemosphere.2022.135735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities in coastal regions cause risks to the environmental and human health. Due to the carcinogenic and mutagenic potential, polycyclic aromatic hydrocarbons (PAH) are considered priority for monitoring. Most of the Brazilian production of Crassostrea gigas oysters are placed in the Bays of Santa Catarina Island. The aim of this study was to evaluate molecular responses (phase I and II of biotransformation and antioxidant defense) of C. gigas from six oyster farming areas potentially contaminated by sanitary sewage in Florianópolis Metropolitan (SC, Brazil): Santo Antônio de Lisboa, Sambaqui, Serraria, Caieira, Tapera, Imaruim. We evaluated the transcript levels of CYP1A1-like, CYP2-like, CYP2AU2-like, CYP356A1, GSTA1A-like, GSTO.4A-like, SULT-like, SOD-like and CAT-like by qRT-PCR. Only oysters from Caieira showed levels of thermotolerant coliforms allowed by the law. Chemicals analyses in soft tissues of oysters showed low to average levels of PAH in all monitored areas. Enhanced transcript levels of phase I (CYP1A1-like, CYP3564A1-like, CYP2-like and CYP2AU2-like) were observed in oysters from Serraria and Imaruí, suggesting higher biotransformation activity in these farming areas. Regarding phase II of biotransformation, GSTO.4A-like was up-regulated in oysters from Imaruí compared to Caieira and Santo Antônio de Lisboa. An upregulation of SOD-like and CAT-like were observed in oysters from Imaruí and Serraria, suggesting that oysters from these sites are facing higher prooxidant conditions compared to other areas. By integrating the biological and chemical data it is suggested that human-derived contaminants are affecting the oyster metabolism in some farming areas.
Collapse
Affiliation(s)
- Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center, NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Herculano Cella
- Laboratory of Algae Cultivation, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bárbara P H Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Clarissa P Ferreira
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Flávia L Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
11
|
Srivastava N, Sarethy IP, Jeevanandam J, Danquah M. Emerging strategies for microbial screening of novel chemotherapeutics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Xu K, Wang H, Li P. The cadmium toxicity in gills of Mytilus coruscus was accentuated by benzo(a)pyrene of higher dose but not lower dose. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109128. [PMID: 34237427 DOI: 10.1016/j.cbpc.2021.109128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
In natural environment, the existence of interactions of toxic mixtures could induce diverse biochemical pathways and consequently exert different toxicological responses in aquatic organisms. However, little information is available on the effects of combined xenobiotics on lower aquatic invertebrates. Here, we assessed the effects of cadmium (Cd, 0.31 mg/L) as well as the mixture of Cd (0.31 mg/L) and benzo(a)pyrene (Bap, 5 or 50 μg/L) on bioaccumulation, antioxidant, lipid peroxidation (LPO) and metallothionein (MT) responses in gills of thick shell mussel Mytilus coruscus. Upon exposed to single Cd, the metal bioaccumulation, antioxidant enzymes activities, LPO and MT level significantly increased in the gills, suggesting an apparent toxicity to mussels. The interaction of Cd + 5 μg/L Bap did not significantly alter these endpoints compared to single Cd. However, once the dose of Bap elevated to 50 μg/L, the induction of bioaccumulation, antioxidant system and LPO was even more pronounced while the induction of MT was remarkably inhibited, implying an accentuated toxicity. Collectively, the current results demonstrated that 0.31 mg/L Cd exposure resulted in severe toxicity to mussels despite of the induction of MT system to alleviate the metal toxicity. Once the Cd exposure combined with Bap, the lower dose of Bap could not change the Cd toxicity while the higher dose of Bap accentuated the toxicity by inhibiting metallothionein synthesis. These findings might provide some useful clues for elucidation the mechanism of the interaction of combined xenobiotics in molluscs.
Collapse
Affiliation(s)
- Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China.
| | - Haoxue Wang
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China
| | - Pengfei Li
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China
| |
Collapse
|
13
|
Bao S, Lin J, Xie M, Wang C, Nie X. Simvastatin affects Nrf2/MAPK signaling pathway and hepatic histological structure change in Gambusia affinis. CHEMOSPHERE 2021; 269:128725. [PMID: 33153852 DOI: 10.1016/j.chemosphere.2020.128725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Simvastatin (SV) is a typical lipid-lowering agent detected widely in waters, so its latent toxic effects to fish are deserved of concern. The purposes of this study aim at revealing the responses of antioxidant system in mosquitofish (Gambusia affinis) under SV exposure. Transcriptional expressions of oxidative stress-related key transcriptional factor Nrf2 and its downstream genes in mosquitofish were determined under SV exposure for different time. Partly related enzymatic activities, Nrf2 and MAPK protein expressions were also addressed in the same conditions, and histological changes in liver tissues were investigated too. Results showed that Nrf2 mRNA increased with the rising SV concentrations at 3 d and 7 d, displaying typical dose-dependent relationship, and Nrf2 protein by WB showed consistency with transcriptional changes to some degree. Comparatively, responses of gene expressions were more sensitive than enzymatic changes. The histological changes in the mosquitofish liver exposed to SV for 7 d indicated the potential adverse effects of statins. This work demonstrated that SV in aquatic environment could affect the transcriptional expression of antioxidant system, partly related enzymatic activity, and hepatic structure in the mosquitofish, revealing its potential risk on non-target organisms and environmental safety.
Collapse
Affiliation(s)
- Shuang Bao
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Jiawei Lin
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Meinan Xie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Zhu S, Aspera-Werz RH, Chen T, Weng W, Braun B, Histing T, Nüssler AK. Maqui berry extract prevents cigarette smoke induced oxidative stress in human osteoblasts in vitro. EXCLI JOURNAL 2021; 20:281-296. [PMID: 33628164 PMCID: PMC7898044 DOI: 10.17179/excli2020-3244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative stress which can be induced by cigarette smoke (CS) is associated with an altered osteoblast differentiation, and an inhibition of the mineralization process. Therefore, treatments focusing on reducing oxidative stress in osteoblasts could be a potential therapy supporting bone formation. Maqui berry extract (MBE) is the richest natural source of delphinidins with high antioxidant activity. In the present study, we pre-/ co-/ post-incubated MBE in cigarette smoke extract (CSE)-affected human osteoblasts (hOBs), to investigate the effects of MBE as an antioxidant on hOBs. Our results clearly showed that high concentrations of MBE are toxic for hOBs, while physiological concentrations of MBE have no negative effects in vitro. Physiological concentrations of MBE can reduce oxidative stress caused by CSE in hOBs by activating the antioxidative regulator Nrf2 and its regulated antioxidative enzymes. Moreover, the physiological concentration of MBE prevents the detrimental effects of CSE-induced oxidative damage on hOBs by increasing cell viability, differentiation capability and matrix mineralization. Pre-incubation with MBE showed a positive effect on the activation of the cellular antioxidant system in hOBs. Thus, we conclude that MBE at physiological concentrations can effectively protect osteoblasts from oxidative stress-induced damage by activating the cells' antioxidative defense system.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Romina H Aspera-Werz
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Tao Chen
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Weidong Weng
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Tina Histing
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Qin W, Zhao X, Tai J, Qin G, Yu S. Combination of Dendrobium Mixture and Metformin Curbs the Development and Progression of Diabetic Cardiomyopathy by Targeting the lncRNA NEAT1. Clinics (Sao Paulo) 2021; 76:e2669. [PMID: 34231706 PMCID: PMC8240788 DOI: 10.6061/clinics/2021/e2669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/21/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES This study aimed to explore the efficacy of combination treatment with dendrobium mixture and metformin (Met) in diabetic cardiomyopathy (DCM) and its effects on NEAT1 and the Nrf2 signaling pathway. METHODS H9c2 cells were maintained in medium supplemented with either low (5.5 mmol/L) or high (50 mmol/L) glucose. Male Sprague-Dawley rats were fed a high-glucose diet and administered a single, low dose of streptozotocin (35 mg/kg) via intraperitoneal injection to induce the development of DM. After induction of DM, the rats were treated with dendrobium mixture (10 g/kg) and Met (0.18 g/kg) daily for 4 weeks. Next, quantitative reverse transcription (qRT)-PCR and western blotting were performed to evaluate the expression levels of target genes and proteins. Flow cytometry was performed to assess apoptosis, and hematoxylin and eosin staining was performed to evaluate the morphological changes in rat cardiac tissue. RESULTS In patients with diabetes mellitus (DM) and myocardial cells and heart tissues from rats with high glucose-induced DM, NEAT1 was downregulated, and the expression levels of Nrf2 were decreased (p<0.01, p<0.001). The combination of dendrobium mixture and Met upregulated the expression of NEAT1 which upregulated Nrf2 by targeting miR-23a-3p, resulting in reduced apoptosis and improved cardiac tissue morphology (p<0.01, p<0.001). CONCLUSION Dendrobium mixture and Met upregulated the expression of NEAT1 in DCM, thereby inhibiting apoptosis of myocardial cells.
Collapse
Affiliation(s)
- Wenmin Qin
- Department of Pharmacy, The Second People's Hospital of Dongying, Dongying, Shandong 257335, China
| | - Xing Zhao
- Department of Pharmacy, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Jie Tai
- Department of Rehabilitation Medicine, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252000, China
| | - Guoyun Qin
- Department of Pharmacy, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, China
| | - Shanshan Yu
- Department of Pharmacy, The Second People's Hospital of Dongying, Dongying, Shandong 257335, China
- Corresponding author. E-mail:
| |
Collapse
|