1
|
Firdous SM, Pal S, Khanam S, Zakir F. Behavioral neuroscience in zebrafish: unravelling the complexity of brain-behavior relationships. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9295-9313. [PMID: 38970686 DOI: 10.1007/s00210-024-03275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
This paper reviews the utility of zebrafish (Danio rerio) as a model system for exploring neurobehavioral phenomena in preclinical research, focusing on physiological processes, disorders, and neurotoxicity biomarkers. A comprehensive review of the current literature was conducted to summarize the various behavioral characteristics of zebrafish. The study examined the etiological agents used to induce neurotoxicity and the biomarkers involved, including Aβ42, tau, MMP-13, MAO, NF-Кβ, and GFAP. Additionally, the different zebrafish study models and their responses to neurobehavioral analysis were discussed. The review identified several key biomarkers of neurotoxicity in zebrafish, each impacting different aspects of neurogenesis, inflammation, and neurodegeneration. Aβ42 was found to alter neuronal growth and stem cell function. Tau's interaction with tubulin affected microtubule stability and led to tauopathies under pathological conditions. MMP-13 was linked to oxidative assault and sensory neuron degeneration. MAO plays a role in neurotransmitter metabolism and neurotoxicity conversion. NF-Кβ was involved in pro-inflammatory pathways, and GFAP was indicative of neuroinflammation and astroglial activation. Zebrafish provide a valuable model for neurobehavioral research, adhering to the "3Rs" philosophy. Their neurotoxicity biomarkers offer insights into the mechanisms of neurogenesis, inflammation, and neurodegeneration. This model system aids in evaluating physiological and pathological conditions, enhancing our understanding of neurobehavioral phenomena and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India.
| | - Sourav Pal
- P.G. Institute of Medical Sciences, Dhurabila, Dhamkuria, Paschim Medinipur: 72:1201, Chandrakona Town, West Bengal, India
| | - Sofia Khanam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Foziyah Zakir
- Department of B.Pharm (Ayurveda), School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| |
Collapse
|
2
|
Bai L, Wen Z, Zhu Y, Jama HA, Sawmadal JD, Chen J. Association of blood cadmium, lead, and mercury with anxiety: a cross-sectional study from NHANES 2007-2012. Front Public Health 2024; 12:1402715. [PMID: 39188794 PMCID: PMC11345141 DOI: 10.3389/fpubh.2024.1402715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Objectives The purpose of this paper is to explore the relationship between blood levels of cadmium, lead, and mercury and anxiety in American adults. Methods Blood metals and self-reported anxiety days were extracted from laboratory data and questionnaire data, respectively, using NHANES data from 2007-2012. Weighted logistic regression was used to assess the relationship between cadmium, lead and mercury with anxiety. Restricted cubic spline was used to visualize the non-linear relationship between metal concentrations and anxiety. Weighted quantile sum (WQS) regression was used to investigate the effect of combined exposure to the three metals on anxiety. Results The prevalence of anxiety in adults was 26.0%. After adjusting for potential confounding variables, cadmium levels in the highest quartile (Q4) were associated with a higher risk of anxiety compared to the lowest quartile (Q1) (OR = 1.279, 95% CI: 1.113-1.471, p < 0.01). Restricted cubic spline analysis indicated a positive association between blood cadmium levels and anxiety. Furthermore, co-exposure to multiple heavy metals was positively associated with anxiety risk (WQS positive: OR = 1.068, 95% CI: 1.016-1.160, p < 0.05), with cadmium contributing the most to the overall mixture effect. Compared to the Light RPA, the Vigorous/Moderate RPA group had a relatively low risk of anxiety after cadmium exposure. Conclusion High levels of blood cadmium are positively associated with the development of anxiety disorders, which needs to be further verified in future studies.
Collapse
Affiliation(s)
- Long Bai
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zongliang Wen
- School of Public Health, Xuzhou Medical University, Xuzhou, China
- School of Management, Xuzhou Medical University, Xuzhou, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| | | | | | - Jialin Chen
- School of Management, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Hu Y, Wang X, Niu Y, He K, Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. NANOSCALE ADVANCES 2024; 6:3733-3746. [PMID: 39050959 PMCID: PMC11265591 DOI: 10.1039/d4na00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
The early-stage diagnosis and therapy of brain diseases pose a persistent challenge in the field of biomedicine. Quantum dots (QDs), nano-luminescent materials known for their small size and fluorescence imaging capabilities, present promising capabilities for diagnosing, monitoring, and treating brain diseases. Although some investigations about QDs have been conducted in clinical trials, the concerns about the toxicity of QDs have continued. In addition, the lack of effective toxicity evaluation methods and systems and the difference between in vivo and in vitro toxicity evaluation hinder QDs application. The primary objective of this paper is to introduce the neurotoxic effects and mechanisms attributable to QDs. First, we elucidate the utilization of QDs in brain disorders. Second, we sketch out three pathways through which QDs traverse into brain tissue. Ultimately, expound upon the adverse consequences of QDs on the brain and the mechanism of neurotoxicity in depth. Finally, we provide a comprehensive summary and outlook on the potential development of quantum dots in neurotoxicity and the difficulties to be overcome.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Keyu He
- Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University Nanjing Jiangsu 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
4
|
Fang Q, Tang M. Oxidative stress-induced neurotoxicity of quantum dots and influencing factors. Nanomedicine (Lond) 2024; 19:1013-1028. [PMID: 38606672 PMCID: PMC11225328 DOI: 10.2217/nnm-2023-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Quantum dots (QDs) have significant potential for treating and diagnosing CNS diseases. Meanwhile, the neurotoxicity of QDs has garnered attention. In this review, we focus on elucidating the mechanisms and consequences of CNS oxidative stress induced by QDs. First, we discussed the pathway of QDs transit into the brain. We then elucidate the relationship between QDs and oxidative stress from in vivo and in vitro studies. Furthermore, the main reasons and adverse outcomes of QDs leading to oxidative stress are discussed. In addition, the primary factors that may affect the neurotoxicity of QDs are analyzed. Finally, we propose potential strategies for mitigating QDs neurotoxicity and outline future perspectives for their development.
Collapse
Affiliation(s)
- Qing Fang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
5
|
Shao X, Xiao D, Yang Z, Jiang L, Li Y, Wang Y, Ding Y. Frontier of toxicology studies in zebrafish model. J Appl Toxicol 2024; 44:488-500. [PMID: 37697940 DOI: 10.1002/jat.4543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Based on the 87 original publications only from quartiles 1 and 2 of Journal Citation Report (JCR) collected by the major academic databases (Science Direct, Web of Science, PubMed, and Wiley) in 2022, the frontier of toxicology studies in zebrafish model is summarized. Herewith, a total of six aspects is covered such as developmental, neurological, cardiovascular, hepatic, reproductive, and immunizing toxicities. The tested samples involve chemicals, drugs, new environmental pollutants, nanomaterials, and its derivatives, along with those related mechanisms. This report may provide a frontier focus benefit to researchers engaging in a zebrafish model for environment, medicine, food, and other fields.
Collapse
Affiliation(s)
- Xinting Shao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Wang L, Liang C, Zheng N, Yang C, Yan S, Wang X, Zuo Z, He C. Kidney injury contributes to edema of zebrafish larvae caused by quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168420. [PMID: 37963533 DOI: 10.1016/j.scitotenv.2023.168420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Edema represents a notable outcome in fishes exposed to aquatic pollutants, yet the underlying etiology remains inadequately understood. This investigation delves into the etiological factors of edema formation in 7 days post fertilization (dpf) zebrafish larvae following their exposure to InP/ZnS quantum dots (QDs), which was chosen as a prototypical edema inducer. Given the fundamental role of the kidney in osmoregulation, we used transgenic zebrafish lines featuring fluorescent protein labeling of the glomerulus, renal tubule, and blood vessels, in conjunction with histopathological scrutiny. We identified the pronounced morphological and structural aberrations within the pronephros. By means of tissue mass spectrometry imaging and hyperspectral microscopy, we discerned the accumulation of InP/ZnS QDs in the pronephros. Moreover, InP/ZnS QDs impeded the renal clearance capacity of the pronephros, as substantiated by diminished uptake of FITC-dextran. InP/ZnS QDs also disturbed the expression levels of marker genes associated with kidney development and osmoregulatory function at the earlier time points, which preceded the onset of edema. These results suggest that impaired fluid clearance most likely resulting from pronephros injury contributes to the emergence of zebrafish edema. Briefly, our study provides a perspective: the kidney developmental injury induced by exogenous substances may regulate edema in a zebrafish model.
Collapse
Affiliation(s)
- Luanjin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixin Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Wang X, Wu T. An update on the biological effects of quantum dots: From environmental fate to risk assessment based on multiple biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163166. [PMID: 37011691 DOI: 10.1016/j.scitotenv.2023.163166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Quantum dots (QDs) are zero-dimension nanomaterials with excellent physical and chemical properties, which have been widely used in environmental science and biomedicine. Therefore, QDs are potential to cause toxicity to the environment and enter organisms through migration and bioenrichment effects. This review aims to provide a comprehensive and systematic analysis on the adverse effects of QDs in different organisms based on recently available data. Following PRISMA guidelines, this study searched PubMed database according to the pre-set keywords, and included 206 studies according to the inclusion and elimination criteria. CiteSpace software was firstly used to analyze the keywords of included literatures, search for breaking points of former studies, and summarize the classification, characterization and dosage of QDs. The environment fate of QDs in the ecosystems were then analyzed, followed with comprehensively summarized toxicity outcomes at individual, system, cell, subcellular and molecular levels. After migration and degradation in the environment, aquatic plants, bacteria, fungi as well as invertebrates and vertebrates have been found to be suffered from toxic effects caused by QDs. Aside from systemic effects, toxicity of intrinsic QDs targeting to specific organs, including respiratory system, cardiovascular system, hepatorenal system, nervous system and immune system were confirmed in multiple animal models. Moreover, QDs could be taken up by cells and disturb the organelles, which resulted in cellular inflammation and cell death, including autophagy, apoptosis, necrosis, pyroptosis and ferroptosis. Recently, several innovative technologies, like organoids have been applied in the risk assessment of QDs to promote the surgical interventions of preventing QDs' toxicity. This review not only aimed at updating the research progress on the biological effects of QDs from environmental fate to risk assessment, but also overcame the limitations of available reviews on basic toxicity of nanomaterials by interdisciplinarity and provided new insights for better applications of QDs.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Wang W, Li Z, Zhang X, Zhang J, Ru S. Bisphenol S Impairs Behaviors through Disturbing Endoplasmic Reticulum Function and Reducing Lipid Levels in the Brain of Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:582-594. [PMID: 36520979 DOI: 10.1021/acs.est.2c07828] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The number of neurotoxic pollutants is increasing, but their mechanism of action is unclear. Here, zebrafish were exposed to 0, 1, 10, and 100 μg/L bisphenol S (BPS) for different durations beginning at 2 h postfertilization (hpf) to explore the neurotoxic mechanisms of BPS. Zebrafish larvae exposed to BPS displayed abnormal neurobehaviors. At 48 and 120 hpf, BPS inhibited yolk lipid consumption and reduced the lipid distribution in the zebrafish brain. Moreover, BPS downregulated the mRNA levels of genes involved in fatty acid elongation in the endoplasmic reticulum (ER) and activated ER stress pathways at 48 and 120 hpf, and KEGG analysis after RNA-seq showed that the protein processing pathway in the ER was significantly enriched after BPS exposure. Exposure to ER toxicants (thapsigargin and tunicamycin), two positive controls, induced neurotoxic effects on zebrafish embryos and larvae similar to those of BPS exposure. These data suggested that BPS and ER toxicants disturbed ER function and reduced brain lipid levels. Continued exposure to BPS into adulthood not only inhibited brain fatty acid elongation and ER function but also caused abnormal swelling of the ER in zebrafish. Our data provide new insights into the neurotoxic mechanism of BPS.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
9
|
Bosch S, Botha TL, Wepener V. Influence of different functionalized CdTe quantum dots on the accumulation of metals, developmental toxicity and respiration in different development stages of the zebrafish ( Danio rerio). FRONTIERS IN TOXICOLOGY 2023; 5:1176172. [PMID: 37200940 PMCID: PMC10185758 DOI: 10.3389/ftox.2023.1176172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: The bioaccumulation and differential effects of cadmium tellurium quantum dot (CdTe QDs) nanomaterials with different functional groups are poorly understood in aquatic organisms. This study aimed to investigate the metal uptake, developmental effects, and respiratory effects of CdTe QDs with different functional groups (COOH, NH3, and PEG) on zebrafish embryos. Methods: Zebrafish embryos were exposed to carboxylate (COOH), ammonia (NH3), and polyethylene glycol (PEG) functionalized CdTe QDs at nominal concentrations of 0.5, 2, 4, 6, and 20 mg QDs/L. The materials were characterized in E3 exposure media and the metal uptake, developmental effects, and respiratory effects of zebrafish embryos were recorded. Results: The total Cd or Te concentrations in the larvae could not be explained by the metal concentrations or dissolution of the materials in the exposure media. The metal uptake in the larvae was not dose-dependent, except for the QD-PEG treatment. The QD-NH3 treatment caused respiration inhibition at the highest exposure concentration and hatching delays and severe malformations at low concentrations. The toxicities observed at low concentrations were attributed to particles crossing the pores in the chorion, and toxicities at higher concentrations were linked to the aggregation of particle agglomerates to the surface of the chorion impairing respiration. Developmental defects were recorded following exposure to all three functional groups, but the QD-NH3 group had the most severe response. The LC50 values for embryo development of QD-COOH and QD-PEG groups were higher than 20 mg/L, and the LC50 of the QD-NH3 group was 20 mg/L. Discussion: The results of this study suggest that CdTe QDs with different functional groups have differential effects on zebrafish embryos. The QD-NH3 treatment caused the most severe effects, including respiration inhibition and developmental defects. These findings provide valuable information for understanding the effects of CdTe QDs on aquatic organisms and highlight the need for further investigation.
Collapse
Affiliation(s)
- Suanne Bosch
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Suanne Bosch,
| | - Tarryn Lee Botha
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Victor Wepener
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|