1
|
Long XB, Yao CR, Li SY, Zhang JG, Lu ZJ, Ma DD, Jiang YX, Ying GG, Shi WJ. Multiomics analysis reveal the impact of 17α-Ethinylestradiol on mortality in juvenile zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 286:110027. [PMID: 39233286 DOI: 10.1016/j.cbpc.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
17α-Ethinylestradiol (EE2) is known for its endocrine-disrupting effects on embryonic and adult fish. However, its impact on juvenile zebrafish has not been well established. In this study, juvenile zebrafish were exposed to EE2 at concentrations of 5 ng/L (low dose, L), 10 ng/L (medium dose, M), and 50 ng/L (high dose, H) from 21 days post-fertilization (dpf) to 49 dpf. We assessed their growth, development, behavior, transcriptome, and metabolome. The findings showed that the survival rate in the EE2-H group was 66.8 %, with all surviving fish displaying stunted growth and swollen, transparent abdomens by 49 dpf. Moreover, severe organ deformities were observed in the gills, kidneys, intestines, and heart of fish in both the EE2-H and EE2-M groups. Co-expression analysis of mRNA and lncRNA revealed that EE2 downregulated the transcription of key genes involved in the cell cycle, DNA replication, and Fanconi anemia signaling pathways. Additionally, metabolomic analysis indicated that EE2 influenced metabolism and development-related signaling pathways. These pathways were also significantly identified based on the genes regulated by lncRNA. Consequently, EE2 induced organ deformities and mortality in juvenile zebrafish by disrupting signaling pathways associated with development and metabolism. The results of this study offer new mechanistic insights into the adverse effects of EE2 on juvenile zebrafish based on multiomics analysis. The juvenile zebrafish are highly sensitive to EE2 exposure, which is not limited to adult and embryonic stages. It is a potential model for studying developmental toxicity.
Collapse
Affiliation(s)
- Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xia Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
2
|
Sanz C, Sunyer-Caldú A, Casado M, Mansilla S, Martinez-Landa L, Valhondo C, Gil-Solsona R, Gago-Ferrero P, Portugal J, Diaz-Cruz MS, Carrera J, Piña B, Navarro-Martín L. Efficient removal of toxicity associated to wastewater treatment plant effluents by enhanced Soil Aquifer Treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133377. [PMID: 38237439 DOI: 10.1016/j.jhazmat.2023.133377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024]
Abstract
The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.
Collapse
Affiliation(s)
- Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Sylvia Mansilla
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Lurdes Martinez-Landa
- Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Dept. of Civil and Environmental Engineering. Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Cristina Valhondo
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Geosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Ruben Gil-Solsona
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jose Portugal
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| |
Collapse
|
3
|
Segarra I, Menárguez M, Roqué MV. Women's health, hormonal balance, and personal autonomy. Front Med (Lausanne) 2023; 10:1167504. [PMID: 37457571 PMCID: PMC10347535 DOI: 10.3389/fmed.2023.1167504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Hormone-based contraception disrupts hormonal balance, creating artificial states of anovulation and threatening women's health. We reviewed its main adverse effects and mechanisms on accelerated ovarian aging, mental health (emotional disruptions, depression, and suicide), sexuality (reduced libido), cardiovascular (brain stroke, myocardial infarction, hypertension, and thrombosis), and oncological (breast, cervical, and endometrial cancers). Other "collateral damage" includes negative effects on communication, scientific mistrust, poor physician-patient relationships, increased patient burden, economic drain on the healthcare system, and environmental pollution. Hormone-sensitive tumors present a dilemma owing to their potential dual effects: preventing some cancers vs. higher risk for others remains controversial, with denial or dismissal as non-relevant adverse effects, information avoidance, and modification of scientific criteria. This lack of clinical assessment poses challenges to women's health and their right to autonomy. Overcoming these challenges requires an anthropological integration of sexuality, as the focus on genital bodily union alone fails to encompass the intimate relational expression of individuals, complete sexual satisfaction, and the intertwined feelings of trust, safety, tenderness, and endorsement of women's femininity.
Collapse
Affiliation(s)
- Ignacio Segarra
- Department of Pharmacy, Faculty of Pharmacy and Nutrition, Catholic University of Murcia (UCAM), Murcia, Spain
- “Pharmacokinetics, Patient Care and Translational Bioethics” Research Group, Faculty of Pharmacy and Nutrition, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Micaela Menárguez
- Bioethics Chair, Faculty of Medicine, Catholic University of Murcia (UCAM), Murcia, Spain
| | - María Victoria Roqué
- “Pharmacokinetics, Patient Care and Translational Bioethics” Research Group, Faculty of Pharmacy and Nutrition, Catholic University of Murcia (UCAM), Murcia, Spain
- Bioethics Chair, Faculty of Medicine, Catholic University of Murcia (UCAM), Murcia, Spain
| |
Collapse
|
4
|
Long XB, Shi WJ, Yao CR, Li SY, Zhang JG, Lu ZJ, Ma DD, Jiang YX, Ying GG. Norethindrone suppress the germ cell development via androgen receptor resulting in male bias. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106604. [PMID: 37311377 DOI: 10.1016/j.aquatox.2023.106604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Progestins are widely used and detected in surface waters, and can affect gonad development and sexual differentiation in fish. However, the toxicological mechanisms of sexual differentiation induced by progestins are not well understood. Here, we investigated the effects of norethindrone (NET) and androgen receptor (AR) antagonist flutamide (FLU) on gonadal differentiation in zebrafish from 21 dpf (days post-fertilization) to 49 dpf. The results showed that NET caused male bias, while FLU resulted in female bias at 49 dpf. The NET and FLU mixtures significantly decreased the percentage of males compared to the NET single exposure. Molecular docking analysis showed that FLU and NET had similar docking pocket and docking posture with AR resulting in competitively forming the hydrogen bond with Thr334 of AR. These results suggested that binding to AR was the molecular initiating event of sex differentiation induced by NET. Moreover, NET strongly decreased transcription of biomarker genes (dnd1, ddx4, dazl, piwil1 and nanos1) involved in germ cell development, while FLU significantly increased transcription of these target genes. There was an increase in the number of juvenile oocytes, which was consistent with the female bias in the combined groups. The bliss independence model analysis further showed that NET and FLU had antagonistic effect on transcription and histology during gonadal differentiation. Thus, NET suppressed the germ cell development via AR, resulting in male bias. Understanding the molecular initiation of sex differentiation in progestins is essential to provide a comprehensive biological basis for ecological risk assessment.
Collapse
Affiliation(s)
- Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|