1
|
Vogs C, Lindqvist D, Wai Tang S, Gugescu L, Alenius H, Wincent E. Transcriptomic and functional effects from a chemical mixture based on the exposure profile in Baltic Sea salmon, on metabolic and immune functions in zebrafish embryo. ENVIRONMENT INTERNATIONAL 2024; 192:109018. [PMID: 39341037 DOI: 10.1016/j.envint.2024.109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
The Baltic Sea is one of the world's most contaminated seas with long-standing adverse health status of its wildlife such as the Baltic Sea salmon, resulting in reduced fecundity and increased mortality. While adverse health effects have been reported among wild fish from the Baltic Sea, the toxicity mechanisms underlying these adversities, and the chemical effect drivers mediating them are poorly understood. To address this knowledge gap, we utilized the zebrafish (Danio rerio) embryo model to determine molecular and functional effects brought on by exposure to a technical mixture including 9 organohalogen compounds detected in serum from wild-caught Baltic Sea salmon. To align with the salmon exposure scenario, an internal dose regimen was opted to establish same relative proportions of the compounds in the zebrafish (whole body) as observed in the salmon serum. Through transcriptomic profiling, we identified dose-dependent effects on immune system and metabolism as two critical functions overlapping with adverse effects observed in wild fish from the Baltic Sea. We then determined likely effect drivers by comparing gene responses of the mixture with those of individual mixture components. Aligned with our transcriptome results, the number of total macrophages was reduced and the zebrafish's ability to respond to a tissue damage suppressed in a dose-dependent manner. This study brings forth a key advancement in delineating the impact of chemical pollutants on the health of wild fish in the Baltic Sea.
Collapse
Affiliation(s)
- Carolina Vogs
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden; Division of Pharmacology and Toxicology, Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE 750 07, Uppsala, Sweden.
| | - Dennis Lindqvist
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden; Department of Environmental Science, Stockholm University, SE 106 91, Stockholm, Sweden.
| | - Sheung Wai Tang
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden
| | - Lydia Gugescu
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden.
| | - Harri Alenius
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden; Human Microbiome Research, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland.
| | - Emma Wincent
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden.
| |
Collapse
|
2
|
Lin W, Wu Z, Wang Y, Jiang R, Ouyang G. Size-dependent vector effect of microplastics on the bioaccumulation of polychlorinated biphenyls in tilapia: A tissue-specific study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170047. [PMID: 38218489 DOI: 10.1016/j.scitotenv.2024.170047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Microplastics play a significant role in interactions between organisms and hydrophobic organic contaminants (HOCs), leading to a joint toxic effect on aquatic organisms. This study extensively investigated the tissue-specific accumulation of polychlorinated biphenyls (PCBs) resulting from different sized microplastics in tilapia (Oreochromis mossambicus) using a passive dosing device. Based on biological feeding behavior considerations, 1 mm and 2 μm polystyrene (PS) microplastics with concentrations of 2 and 5 mg L-1 were investigated. A physiologically based toxicokinetic (PBTK) model was applied to evaluate the exchange kinetics and fluxes among the tissues. Moreover, an in vitro simulation experiment was conducted to theoretically validate the vector effect. The findings demonstrated that the effects caused by HOCs and microplastics on organisms were influenced by multiple factors such as size and surface properties. The mass transfer kinetics of HOCs in specific tissues were closely related to their adsorption capacity and position microplastics could reach. Specifically, although 2 μm microplastics exhibited high adsorption capacity for PCBs, they were only retained in the intestines and did not significantly contribute to the bioaccumulation of PCBs in gills or muscle. While 1 mm microplastics were ingested but just paused in the mouth and subsequently flew through the gills with oral mucus. Their vector effects increased the desorption of microplastic-bound PCB-118 in the gill mucus microcosm, thereby facilitating the mass transfer and accumulation of PCB-118 in gills and muscle. This study sheds new light on how the size-dependent vector generated by microplastics affects the tissue-specific accumulation of HOCs in aquatic organisms.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Zhongshu Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yili Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Liu S, Hu R, Zhan H, You W, Tao J, Jiang L. Study on the Biomolecular Competitive Mechanism of Polybrominated Diphenyl Ethers and Their Derivatives on Thyroid Hormones. Molecules 2023; 28:7374. [PMID: 37959791 PMCID: PMC10650872 DOI: 10.3390/molecules28217374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants. PBDEs and their derivatives, hydroxylated PBDEs (OH-PBDEs), can bind to hormone receptors and impact hormone secretion, transportation, and metabolism, leading to endocrine disruption and the development of various diseases. They have particularly strong interference effects on thyroid hormones. This study used decabromodiphenyl ether (BDE-209); 2,2',4,4'-tetrabromodiphenyl ether (BDE-47); and 6-OH-BDE-47 as representative compounds of PBDEs and their derivatives, OH-PBDEs. A fluorescence probe, fluorescein-isothiocyanate-L-thyroxine (FITC-T4, F-T4), specific for binding to transthyretin (TTR), a thyroid transport protein, was prepared. The binding capacity of PBDEs and their derivatives, OH-PBDEs, to TTR was quantitatively measured using fluorescence spectroscopy. The principle of quenching the fluorescence intensity of F-T4 after binding to TTR was used to analyze the competitive interaction between the probe and BDE-209, BDE-47, and 6-OH-BDE-47, thereby evaluating the toxic effects of PBDEs and their derivatives on the thyroid system. Additionally, AutoDock molecular docking software (1.5.6) was used to further analyze the interference mechanism of OH-PBDEs on T4. The results of the study are as follows: (1) Different types of PBDEs and OH-PBDEs exhibit varying degrees of interference with T4. Both the degree of bromination and hydroxylation affect their ability to competitively bind to TTR. Higher bromination and hydroxylation degrees result in stronger competitive substitution. (2) The competitive substitution ability of the same disruptor varies at different concentrations. Higher concentrations lead to stronger substitution ability, but there is a threshold beyond which the substitution ability no longer increases. (3) When OH-PBDEs have four or more bromine atoms and exhibit the most structural similarity to T4, their binding affinity to TTR is stronger than that of T4.
Collapse
Affiliation(s)
- Shaoheng Liu
- Engineering Research Center of Hunan Province for Recycling Technology of Electroplating Wastewater, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Rong Hu
- College of Environment, South China Normal University, Guangzhou 510006, China
| | - Hao Zhan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Wanli You
- Engineering Research Center of Hunan Province for Recycling Technology of Electroplating Wastewater, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Jianjun Tao
- Engineering Research Center of Hunan Province for Recycling Technology of Electroplating Wastewater, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Luhua Jiang
- Key Laboratory of Biometallurgy of Ministry of Education, College of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|