1
|
Guo Y, Zhang T, Wang X, Zhang J, Miao W, Li QX, Fan Y. Toxic effects of the insecticide tolfenpyrad on zebrafish embryos: Cardiac toxicity and mitochondrial damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2583-2595. [PMID: 38205909 DOI: 10.1002/tox.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.
Collapse
Affiliation(s)
- Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| |
Collapse
|
2
|
Liu M, Li J, Li J, Zhou B, Lam PKS, Hu C, Chen L. Developmental cardiotoxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in marine medaka (Oryzias melastigma). JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133176. [PMID: 38070264 DOI: 10.1016/j.jhazmat.2023.133176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024]
Abstract
The application of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) as an antifouling biocide causes high toxicity to non-target marine organisms. To examine the developmental cardiotoxicity and mechanisms of DCOIT, we concurrently performed sub-chronic exposure and life-cycle exposure experiments using marine medaka embryos. After sub-chronic exposure to DCOIT at 1, 3, 10, and 33 μg/L, cardiac defects were caused by upregulation of cardiac gene transcriptions, decreasing heart size, and accelerating heartbeat. Hyperthyroidism in medaka larvae was identified as the cause of developmental cardiotoxicity of DCOIT sub-chronic exposure. In addition, parental life-cycle exposure to 1, 3, and 10 μg/L DCOIT led to transgenerational impairment of cardiogenesis in offspring medaka. A crossbreeding strategy discriminated a concentration-dependent mechanism of transgenerational cardiotoxicity. At 1 μg/L, the DCOIT-exposed female parent transferred a significantly higher amount of triiodothyronine (T3) hormone to offspring, corresponding to an accelerated heart rate. However, DCOIT at higher exposure concentrations modified the methylome imprinting in larval offspring, which was associated with cardiac dysfunction. Overall, the findings provide novel insights into the developmental cardiotoxicity of DCOIT. The high risks of DCOIT-even at environmentally realistic concentrations-raise concerns about its applicability as an antifoulant in a marine environment.
Collapse
Affiliation(s)
- Mengyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Liu B, Li P, Du RY, Wang CL, Ma YQ, Feng JX, Liu L, Li ZH. Long-term tralopyril exposure results in endocrinological and transgenerational toxicity: A two-generation study of marine medaka (Oryzias melastigma). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169344. [PMID: 38097088 DOI: 10.1016/j.scitotenv.2023.169344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
This study aims to investigate the impact of tralopyril, a newly developed marine antifouling agent, on the reproductive endocrine system and developmental toxicity of offspring in marine medaka. The results revealed that exposure to tralopyril (0, 1, 20 μg/L) for 42 days resulted in decreased reproductive capacity in marine medaka. Moreover, it disrupted the levels of sex hormones E2 and T, as well as the transcription levels of genes related to the HPG axis, such as cyp19b and star. Sex-dependent differences were observed, with females experiencing more pronounced effects. Furthermore, intergenerational toxicity was observed in F1 offspring, including increased heart rate, changes in retinal morphology and cartilage structure, decreased swimming activity, and downregulation of transcription levels of relevant genes (HPT axis, GH/IGF axis, cox, bmp4, bmp2, runx2, etc.). Notably, the disruption of the F1 endocrine system by tralopyril persisted into adulthood, indicating a transgenerational effect. Molecular docking analysis suggested that tralopyril's RA receptor activity might be one of the key factors contributing to the developmental toxicity observed in offspring. Overall, our study highlights the potential threat posed by tralopyril to the sustainability of fish populations, as it can disrupt the endocrine system and negatively impact aquatic organisms for multiple generations.
Collapse
Affiliation(s)
- Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
4
|
Arrokhman S, Luo YH, Lin P. Additive cardiotoxicity of a bisphenol mixture in zebrafish embryos: The involvement of calcium channel and pump. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115225. [PMID: 37418940 DOI: 10.1016/j.ecoenv.2023.115225] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Bisphenol A (BPA) and its analogs, such as bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol B (BPB), are often simultaneously detected in environmental and human specimens. Thus, assessing the toxicity of bisphenol (BP) mixtures is more relevant than assessing that of each BP type. Here, we found that BPs, individually or in a mixture, concentration-dependently and additively increased the mortality of zebrafish embryos (ZFEs) at 96 h post fertilization (hpf) and induced bradycardia (i.e., reduced heart rate) at 48 hpf, indicating their cardiotoxic potency. BPAF was the most potent, followed by BPB, BPA, and BPF. We then explored the mechanism underlying BP-induced bradycardia in ZFEs. Although BPs increased the mRNA expression of the estrogen-responsive gene, treatment with the estrogen receptor inhibitor ICI 182780 did not prevent BP-induced bradycardia. Because they did not change cardiomyocyte counts or heart development-related gene expression, BPs might not affect cardiomyocyte development. By contrast, BPs might impair calcium homeostasis during cardiac contraction and relaxation through the downregulation of the expression of the mRNAs for the pore-forming subunit of L-type Ca2+ channel (LTCC; cacna1c) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA; atp2a2a). BPs reduced SERCA activity significantly. BPs also potentiated the cardiotoxicity induced by the LTCC blocker nisoldipine, conceivably by inhibiting SERCA activity. In conclusion, BPs additively induced bradycardia in ZFEs, possibly by impeding calcium homeostasis during cardiac contraction and relaxation. BPs also potentiated the cardiotoxicity of calcium channel blockers.
Collapse
Affiliation(s)
- Salim Arrokhman
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| |
Collapse
|
5
|
Li Y, Zhang Z, Wang J, Shan Y, Tian H, Cui P, Ru S. Zebrafish (Danio rerio) TRβ- and TTR-based electrochemical biosensors: Construction and application for the evaluation of thyroid-disrupting activity of bisphenols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121745. [PMID: 37127237 DOI: 10.1016/j.envpol.2023.121745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Thyroid-disrupting chemicals (TDCs) have received increasing concerns because of their negative health impacts on both wildlife and humans. This study aimed to develop in vitro screening assays for TDCs based on thyroid hormone receptor β (TRβ) and transthyretin (TTR) proteins. Firstly, the recombinant ligand-binding domain of TRβ (TRβ-LBD) and TTR proteins of zebrafish were produced by eukaryotic expression system and then used as bio-recognition components to construct electrochemical biosensors. In the biosensors, the supported bilayer lipid membrane (s-BLM) was used as a matrix to immobilize proteins, and gold nanoflowers (AuNFs) were used to improve the sensitivity by increasing electroactive surface area. Under the optimizing conditions, the zfTRβ-LBD/AuNFs/s-BLM/GCE biosensor had a detection range of 0.23 nM-1.92 μM and a detection limit of 0.07 nM for triiodothyronine (T3), while the zfTTR/AuNFs/s-BLM/GCE biosensor had a detection range of 0.46 nM-3.84 μM, with a detection limit of 0.13 nM. Based on the constructed biosensors, the order of T3 equivalent concentrations of bisphenols was BPA ≈ BPS > BPF > BPAF ≈ BPAP > BPZ, which was similar to the results of recombinant TRβ two-hybrid yeast assay. Furthermore, the reliability of the biosensors was validated by molecular docking, in which BPA and BPS showed higher binding affinity to zfTRβ-LBD. Therefore, this study provided a valuable tool for efficiently screening TDCs.
Collapse
Affiliation(s)
- Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|