1
|
Luan F, Zou J, Zhang X, Zeng J, Peng X, Li R, Shi Y, Zeng N. The extraction, purification, structural features, bioactivities, and applications of Schisandra chinensis polysaccharides: A review. Int J Biol Macromol 2024; 262:130030. [PMID: 38336330 DOI: 10.1016/j.ijbiomac.2024.130030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Schisandra chinensis, as a famous medicinal and food homologous plant, has a long history of medicinal and dietary therapy. It has the functions of nourishing the kidney, calming the heart, tranquilising the mind, tonifying Qi and producing fluid to relieve mental stress, based on the theory of traditional Chinese medicine. Accumulating evidence has shown that S. chinensis polysaccharides (SCPs) are one of the most important bioactive macromolecules and exhibit diverse biological activities in vitro and in vivo, including neuroprotective, hepatoprotective, immunomodulatory, antioxidant, hypoglycemic, cardioprotective, antitumour and anti-inflammatory activities, etc. This review aims to thoroughly review the recent advances in the extraction and purification methods, structural features, biological activities and structure-activity relationships, potential applications and quality assessment of SCPs, and further highlight the therapeutic potentials and health functions of SCPs in the fields of therapeutic agents and functional food development. Future insights and challenges of SCPs were also critically discussed. Overall, the present review provides a theoretical overview for the further development and utilization of S. chinensis polysaccharides in the health food and pharmaceutical fields.
Collapse
Affiliation(s)
- Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Ruiyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China.
| |
Collapse
|
2
|
Jia W, Jiang S, Wang F, Li J, Wang Z, Yao Z. Natural antibacterial membranes prepared using Schisandra chinensis extracts and polyvinyl alcohol in an environment-friendly manner. CHEMOSPHERE 2024; 346:140524. [PMID: 37923017 DOI: 10.1016/j.chemosphere.2023.140524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Foodborne pathogens can cause food spoilage and lead to food safety issues. In recent years, food packaging has received a lot of attention. Traditional packaging membranes are non-biodegradable and remain in the environment for a long time. In this study, natural antimicrobial substances were extracted from Schisandra chinensis by a green extraction process using distilled water as the solvent, and the effects of different treatment on the antimicrobial activity of the extract were compared. At the same time, four types of Schisandra chinensis antimicrobial membranes were prepared using polyvinyl alcohol (PVA) as the substrate. The whole extraction and membrane preparation process did not involve organic solvents, making the process green and environment friendly. Material characterization included inverted biological microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), tensile strength test, pore size measurement, water uptake test, etc. Among them, no extract particles were observed with the naked eye on the surfaces of MⅡ and MⅣ. MⅡ has a uniformly transparent, nearly colorless morphology and is the most tensile. MⅣ surface is flat and smooth, the microstructure is dense and uniform. At the same time, the four types of membranes were tested against common pathogenic bacteria for 12 h, and the OD600 trend revealed the excellent antimicrobial activity of the membranes against S. aureus, MRSA, E. coli, and L. monocytogenes. The membranes could also be reused at least once. This study provides a new idea for preparing natural plant-based antimicrobial membranes.
Collapse
Affiliation(s)
- Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zeru Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Valíčková J, Zezulka Š, Maršálková E, Kotlík J, Maršálek B, Opatřilová R. Potential toxicity of Schisandra chinensis to water environment: acute toxicity tests with water crustaceans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112625-112630. [PMID: 37837583 PMCID: PMC10643315 DOI: 10.1007/s11356-023-30182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
Fruits of Schisandra chinensis, an East Asian liana plant, are currently more and more used to produce nutrient supplements that positively affect human health due to the content of various secondary metabolites. On the other hand, these substances because of their bioactivity can cause possible allelopathic or toxic effects concerning other organisms (algae, plants, animals). But the ecotoxicological properties of S. chinensis outside its area of origin have yet to be sufficiently verified. Two crustaceans, Daphnia magna and Thamnocephalus platyurus, were selected as model aquatic organisms to test the potential impact of S. chinensis active compounds on the aquatic environment. Crude water extract from S. chinensis fruits, simulating the natural leakage of active substances in water, was tested in treatments from 0.0045 to 45 mg/L (according to the content of schisandrin as the dominating lignan). Effective concentration (EC50) causing 50% lethal effect for D. magna was established to 0.0448 mg/L after 24 h and 0.0152 mg/L after 48 h. EC50 for T. platyurus reached 0.4572 mg/L after 24 h, i.e. more than ten times higher than for D. magna. This study showed that the potential environmentally relevant concentrations of S. chinensis bioactive compounds could represent a severe risk to aquatic ecosystems.
Collapse
Affiliation(s)
- Jana Valíčková
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic.
| | - Štěpán Zezulka
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200, Brno, Czech Republic
| | - Eliška Maršálková
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200, Brno, Czech Republic
| | - Josef Kotlík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Blahoslav Maršálek
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200, Brno, Czech Republic
| | - Radka Opatřilová
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200, Brno, Czech Republic
| |
Collapse
|
4
|
Olas B. Cardioprotective Potential of Berries of Schisandra chinensis Turcz. (Baill.), Their Components and Food Products. Nutrients 2023; 15:nu15030592. [PMID: 36771299 PMCID: PMC9919427 DOI: 10.3390/nu15030592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Schisandra chinensis (S. chinensis) berries, originally a component of traditional herbal medicine in China, Korea, and other east Asian countries, are also valuable agents in modern phototherapy. S. chinensis berry preparations, including extracts and their chemical components, demonstrate anti-cancer, hepatoprotective, anti-inflammatory, and antioxidant properties, among others. These valuable properties, and their therapeutic potential, are conditioned by the unique chemical composition of S. chinensis berries, particularly their lignan content. About 40 of these compounds, mainly dibenzocyclooctane type, were isolated from S. chinensis. The most important bioactive lignans are schisandrin (also denoted as schizandrin or schisandrol A), schisandrin B, schisantherin A, schisantherin B, schisanhenol, deoxyschisandrin, and gomisin A. The present work reviews newly-available literature concerning the cardioprotective potential of S. chinensis berries and their individual components. It places special emphasis on the cardioprotective properties of the selected lignans related to their antioxidant and anti-inflammatory characteristis.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|