1
|
Novel thermal synthesis of ternary Cu-CuO-Cu2O nanospheres supported on reduced graphene oxide for the sensitive non-enzymatic electrochemical detection of pyruvic acid as a cancer biomarker. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
2
|
Yun YR, Lee SY, Seo B, Kim H, Shin MG, Yang S. Sensitive electrochemical immunosensor to detect prohibitin 2, a potential blood cancer biomarker. Talanta 2022; 238:123053. [PMID: 34801909 DOI: 10.1016/j.talanta.2021.123053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
Blood cancers are difficult to cure completely and frequently show a poor prognosis. Recently, prohibitin 2 (PHB2) has been shown to be a potential biomarker for blood cancers. Sandwich ELISA can be used as a reference method for quantitative analysis of PHB2; however, ELISA can be challenging for early diagnosis and continuous monitoring method due to the need for large sample volumes (25 μL <), technical expertise, complex procedure, relative high cost, and non-portability. Thus, this study developed a sensitive and time efficient electrochemical immunosensor for detecting PHB2 from a blood cancer patient. It is a simple and portable platform consisting of a disposable electrode and blood sample volume of 4 μL. The sensor uses a gold nanostructured electrode and square wave voltammetry (SWV) measurement of a horseradish peroxidase (HRP) label to amplify the electrochemical signal. The immunosensor could quantitatively detect PHB2 with high sensitivity (limit of detection [LoD] = 0.04 ng/mL) and satisfactory reproducibility (relative standard deviation [RSD] <5.2%). The sensor achieved an LoD of 0.63 ng/mL with satisfactory recovery (89.1-104.7%) and reproducibility (RSD <6.4%) with PHB2 spiked into white blood cell (WBC) lysates. When the sensor was compared to a reference ELISA to determine the PHB2 concentrations in WBC lysate samples from healthy patients and those with blood cancer, the correlation coefficient (R2) was 0.996. A 3.3-fold difference was detected in the measured PHB2 concentration between blood cancer patients and healthy individuals. Accordingly, this study suggests a sensitive and accurate analytical method for quantitatively detecting the PHB2 in blood samples.
Collapse
Affiliation(s)
- Young-Ran Yun
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Bokyung Seo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital (CNUHH), Hwasun, Republic of Korea
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; School of Mechanical Engineering, GIST, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Jin Mei C, Ainliah Alang Ahmad S. A review on the determination heavy metals ions using calixarene-based electrochemical sensors. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
4
|
Das N, Damodaran V, Chakraborty B, Roychaudhuri C. Experiment and FEM Analysis of Silica Nanoparticle-Based Impedance Immunosensor for Sensitivity Enhancement. IEEE Trans Nanobioscience 2021; 20:247-255. [PMID: 33690122 DOI: 10.1109/tnb.2021.3064677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article investigates the impact of incorporating silica nanoparticles of varying diameters in label free impedance immunosensor. It has been observed that even if the surface area improvement has been adjusted to be similar for all the diameters, the sensitivity is enhanced by five times at a particular diameter of 100 nm due to the optimum combination of intersection with electric field lines and surface convexity. This study has enabled the detection of 0.1 fM Hep-B surface antigen with a reliable sensitivity of around 75%. Further, it has been observed that the SNR corresponding to 0.1 fM is 20 dB only for 100 nm particle. This SNR is comparable to a recent report on Hep-B virus detection but the limit of detection in the proposed sensor is lowered by more than three orders of magnitude.
Collapse
|
5
|
Lim K, Lee YS, Simoska O, Dong F, Sima M, Stewart RJ, Minteer SD. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD + Regeneration in Mediated NAD +-Dependent Bioelectrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10942-10951. [PMID: 33646753 DOI: 10.1021/acsami.0c22302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the past two decades, the designs of redox polymers have become critical to the field of mediated bioelectrocatalysis and are used in commercial glucose biosensors, as well as other bioelectrochemical applications (e.g., energy harvesting). These polymers are specifically used to immobilize redox mediators on electrode surfaces, allowing for self-exchange-based conduction of electrons from enzymes far from the electrode to the electrode surface. However, the synthesis of redox polymers is challenging and results in large batch-to-batch variability. Herein, we report a rapid entrapment of mediators for NAD+-dependent bioelectrocatalysis within reverse ionically condensed polyelectrolytes. A high ionic strength aqueous solution of oppositely charged polyelectrolytes, composed of cationic polyguanidinium (PG) chloride and anionic sodium hexametaphosphate (P6), undergoes phase inversion into a solid microporous polyelectrolyte complex (PEC) when introduced into a low ionic strength aqueous solution. The ionic strength-triggered phase inversion of PGP6 solutions was investigated as a means to entrap mediators on the surface of electrodes for mediated bioelectrocatalysis. Compared to the traditional cross-linked immobilizations using redox polymers, this phase inversion takes place within seconds and requires up to 60 min for complete stabilization. In this work, redox mediator phenazine ethosulfate (PES) was entrapped within PGP6 on electrode surfaces for nicotinamide adenine dinucleotide (NAD+)-dependent bioelectrocatalysis. In the bulk solution, NAD+-dependent dehydrogenase enzymes catalyze the oxidation of the substrate while reducing NAD to reduced nicotinamide adenine dinucleotide (NADH). The resulting NADH is reoxidized to NAD+ by the entrapped PES that gets reduced on the electrode, completing the NAD+-regeneration-based bioelectrocatalysis. To show the use of these new materials in an application, biofuel cells were evaluated using four different anodic enzyme systems (alcohol dehydrogenase, lactate hydrogenase, glycerol dehydrogenase, and glucose dehydrogenase).
Collapse
Affiliation(s)
- Koun Lim
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Monika Sima
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Dsouza Priya Swetha P, Sudhakara Prasad K. A Non‐enzymatic Disposable Electrochemical Sensor for Pyruvic Acid. ELECTROANAL 2020. [DOI: 10.1002/elan.202060206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Poyye Dsouza Priya Swetha
- Nanomaterial research laboratory (NMRL), Nano Division, Yenepoya Research Centre Yenepoya (Deemed to be University), Deralakatte Mangalore 575 018 India
| | - K. Sudhakara Prasad
- Nanomaterial research laboratory (NMRL), Nano Division, Yenepoya Research Centre Yenepoya (Deemed to be University), Deralakatte Mangalore 575 018 India
- Centre for Nutrition Studies Yenepoya (Deemed to be University), Deralakatte Mangalore 575 018 India
| |
Collapse
|
7
|
Laribi A, Allegra S, Souiri M, Mzoughi R, Othmane A, Girardot F. Legionella pneumophila sg1-sensing signal enhancement using a novel electrochemical immunosensor in dynamic detection mode. Talanta 2020; 215:120904. [PMID: 32312449 DOI: 10.1016/j.talanta.2020.120904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/20/2023]
Abstract
This work presents a comparison between static and dynamic modes of biosensing using a novel microfluidic assay for continuous and quantitative detection of Legionella pneumophila sg1 in artificial water samples. A self-assembled monolayer of 16-amino-1-hexadecanethiol (16-AHT) was covalently linked to a gold substrate, and the resulting modified surface was used to immobilize an anti-Legionella pneumophila monoclonal antibody (mAb). The modified surfaces formed during the biosensor functionalization steps were characterized using electrochemical measurements and microscopic imaging techniques. Under static conditions, the biosensor exhibited a wide linear response range from 10 to 108 CFU/mL and a detection limit of 10 CFU/mL. Using a microfluidic system, the biosensor responses exhibited a linear relationship for low bacterial concentrations ranging from 10 to 103 CFU/mL under dynamic conditions and an enhancement of sensing signals by a factor of 4.5 compared to the sensing signals obtained under static conditions with the same biosensor for the detection of Legionella cells in artificially contaminated samples.
Collapse
Affiliation(s)
- Ahlem Laribi
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France; Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia.
| | - Séverine Allegra
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| | - Mina Souiri
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Ridha Mzoughi
- Regional Laboratory of Hygiene, University Hospital Farhat Hached, 4000 Sousse, Tunisia and Laboratory of Analysis Treatment and Valorization of Pollutants and Products, Faculty of Pharmacy, 5000, Monastir, Tunisia
| | - Ali Othmane
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Françoise Girardot
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| |
Collapse
|
8
|
Xuan G, Lu X, Wang J, Lin H, Liu H. Determination of pyruvic acid concentration using a bioluminescence system from Photobacterium leiognathi. Photochem Photobiol Sci 2015; 14:1163-8. [PMID: 25959227 DOI: 10.1039/c5pp00118h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, highly sensitive and selective bacterial luminescence method for the detection of pyruvic acid (PA) is reported here. This method is based on a reaction system catalyzed by lactate dehydrogenase (LDH) with the bacterial luciferase-FMN:NADH oxidoreductase bioluminescence system in vitro. The reduced nicotinamide adenine dinucleotide (NADH) involved in the LDH reaction system could be quantitatively analyzed by the bioluminescence system. A good linear relationship between the luminescence intensity and pyruvic acid concentration was exhibited within the range of 0.00014-0.001 mol l(-1), and the pyruvic acid detection limit was found to be 8.537 × 10(-5) mol l(-1). This method was successfully applied to the detection of PA in quail serum with a good recovery of over 70%.
Collapse
Affiliation(s)
- Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | | | | | | | | |
Collapse
|