1
|
Liu C, Fang Y, Tang J, Chen Z. Derivatization of dihydrotetrabenazine for technetium-99m labelling towards a radiotracer targeting vesicular monoamine transporter 2. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
2
|
De Silva L, Fu JY, Htar TT, Wan Kamal WHB, Kasbollah A, Muniyandy S, Chuah LH. Biodistribution Study of Niosomes in Tumor-Implanted BALB/C Mice Using Scintigraphic Imaging. Front Pharmacol 2022; 12:778396. [PMID: 35069200 PMCID: PMC8777053 DOI: 10.3389/fphar.2021.778396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this work was to study the biodistribution of niosomes in tumor-implanted BALB/c mice using gamma scintigraphy. Niosomes were first formulated and characterized, then radiolabeled with Technetium-99 m (99mTc). The biodistribution of 99mTc-labeled niosomes was evaluated in tumor-bearing mice through intravenous injection and imaged with gamma scintigraphy. The labeled complexes possessed high radiolabeling efficiency (98.08%) and were stable in vitro (>80% after 8 h). Scintigraphic imaging showed negligible accumulation in the stomach and thyroid, indicating minimal leaching of the radiolabel in vivo. Radioactivity was found mainly in the liver, spleen and kidneys. Tumor-to-muscle ratio indicated a higher specificity of the formulation for the tumor area. Overall, the formulated niosomes are stable both in vitro and in vivo, and show preferential tumor accumulation.
Collapse
Affiliation(s)
- Leanne De Silva
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ju-Yen Fu
- Nutrition Unit, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Azahari Kasbollah
- Medical Technology Division, Malaysian Nuclear Agency, Bangi, Malaysia
| | - Saravanan Muniyandy
- Department of Pharmacy, Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Naqvi SAR. 99m Tc-labeled antibiotics for infection diagnosis: Mechanism, action, and progress. Chem Biol Drug Des 2021; 99:56-74. [PMID: 34265177 DOI: 10.1111/cbdd.13923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/08/2021] [Accepted: 06/06/2021] [Indexed: 01/01/2023]
Abstract
Discovery of penicillin marked a turning point in the history of infection therapy which also led to the emergence of bacterial resistance. It is now 100 years to fight with ever-muted variants of pathogens by developing more and more antibiotics. Since 1987 to todate, no successful class of antibiotic was introduced; this three decade period is known as "the discovery void" period. While, the clinically approved antibiotics are gradually dying in front of bacterial resistance due to which bacterial infections are appearing leading cause of death and disability. Nuclear medicine imaging technique is the strongest modality to diagnose and follow-up of deep-seated and complicated infections. However, the selection of radiolabeled antimicrobial agents plays critical role in gaining sensitivity and specificity of the imaging results. This review comprises of two main sections; first section explains antibiotic targets, and second section explains the imaging efficacy of 99m Tc-labeled antimicrobial agents against bacterial infection along with the emphasis on progress and update of 99m Tc-labeled antibiotics as infection imaging probes. The review, in conclusion, could be an acceleration for radiopharmaceutical chemists for designing and developing 99m Tc-labeled antimicrobial agents to improve infection imaging quality.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
4
|
Massoud A, Challan SB, Maziad N. Characterization of polyvinylpyrrolidone (PVP) with technetium-99m and its accumulation in mice. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1873070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- A. Massoud
- Nuclear Chemistry Department, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - S. B. Challan
- Labeled Compounds Department, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nabila Maziad
- Polymer Chemistry Department, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Pandey V, Haider T, Chandak AR, Chakraborty A, Banerjee S, Soni V. Technetium labeled doxorubicin loaded silk fibroin nanoparticles: Optimization, characterization and in vitro evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Unnam S, Panduragaiah VM, Sidramappa MA, Muddana Eswara BR. Gemcitabine-loaded Folic Acid Tagged Liposomes: Improved Pharmacokinetic and Biodistribution Profile. Curr Drug Deliv 2019; 16:111-122. [PMID: 30360740 DOI: 10.2174/1567201815666181024112252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/05/2018] [Accepted: 10/18/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Gemcitabine (GEM) is found effective in the treatment of many solid tumors. However, its use is restricted due to its small circulation half-life, fast metabolism and low capacity for selective tumor uptake. Folate receptors (FRs) have been recognized as cellular surface markers, which can be used for cancer targeting. PEGylated liposomes decorated with folic acid have been investigated for several anticancer agents not only to extend plasma half-life but also for tumor targeting via folic acid receptors which overexpressed on tumor cell surface. OBJECTIVE Therefore, the objective of the present study was to prepare GEM-loaded folic acid tagged liposomes to improve the pharmacokinetics and tumor distribution of GEM. METHODS The blank folate-targeted liposomes composed of HSPC/DSPE-mPEG2000/DSPE-mPEG-Folic acid were prepared first by thin film hydration technique. GEM was then loaded into liposomes by remote loading technique. The optimized liposomal formulations were evaluated in vitro for GEM release using dialysis technique, HeLa cell uptake using FACS technique, and cytotoxicity using MTT dye reduction assay. The comparative in vivo pharmacokinetic and biodistribution characteristics of radiolabeled (99mTc-labeled) plain GEM solution, and all liposomal formulations (conventional:CLs; stealth: SLs; folate targeted: FTLs) were evaluated in mice model. RESULTS GEM-loaded FTLs showed sustained release profile, efficient uptake by HeLa cells and greater cytotoxicity. Further, FTLs displayed significantly improved pharmacokinetics, and biodistribution profile of loaded GEM. CONCLUSION In conclusion, the developed GEM-loaded folic acid receptor-targeted liposomal formulation could be a promising and potential alternative formulation for further development.
Collapse
Affiliation(s)
- Sambamoorthy Unnam
- Department of Pharmacy, Biju Patnaik University of Technology, Rourkela, Odisha, India.,NRI College of Pharmacy, Pothavarappadu, Agiripalli, Krishna District, Andhrapradesh, India
| | | | | | | |
Collapse
|
7
|
Nanda B, Manjappa AS, Chuttani K, Balasinor NH, Mishra AK, Ramachandra Murthy RS. Acylated chitosan anchored paclitaxel loaded liposomes: Pharmacokinetic and biodistribution study in Ehrlich ascites tumor bearing mice. Int J Biol Macromol 2018; 122:367-379. [PMID: 30342146 DOI: 10.1016/j.ijbiomac.2018.10.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
Acylated chitosan (Myristoyl and Octanoyl) coated paclitaxel-loaded liposomal formulation was developed with an aim to overcome the cremophor EL related toxicities. They were evaluated for drug entrapment, in vitro drug release, and cytotoxicity and cell uptake behavior using A549 cells. The 99mTc radio-labeled formulations were also evaluated in vivo in Ehrlich Ascites Tumor (EAT) bearing mice for biodistribution and tumor uptake. The mean particle size of both coated and uncoated liposomal formulations was found to be in the range of 180-200 nm with high drug entrapment efficiency (>90% in case of uncoated liposomes and 80 ± 5% in case of coated liposomes). The uncoated liposomes displayed negative zeta potential (-10.5 ± 4.9 mV) whereas coated liposomes displayed positive zeta potential in the range of +21 to +27 mV. Slower drug release was observed in case of liposomes coated with acylated chitosans as compared to uncoated and native chitosan coated liposomes. All liposomal formulations were found less cytotoxic than paclitaxel injection (Celtax™, Celon Labs, India). In vitro cell uptake and intracellular distribution studies confirmed the cytosolic delivery of uncoated and coated liposomes. The myristoyl chitosan coated liposomal system (LMC) exhibited improved pharmacokinetic, biodistribution and tumor uptake characteristics over other formulations. These obtained results confirmed the potential application of acylated chitosn coated liposomal delivery systems (LMC) in tumor targeting of paclitaxel and other drugs.
Collapse
Affiliation(s)
- Biswarup Nanda
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India.
| | - A S Manjappa
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India; Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, India
| | - Krishna Chuttani
- Division of Radiopharmaceuticals & Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - N H Balasinor
- Neuroendocrinology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - Anil K Mishra
- Division of Radiopharmaceuticals & Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Rayasa S Ramachandra Murthy
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India; Nanomedicine Centre, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
8
|
Patel A, Tyagi A, Sharma RK, Thakkar H. Formulation of 99mTechnetium-labeled leuprolide loaded liposomes and its biodistribution study in New Zealand white female rabbits for assessment of its uterine targeting efficiency. Drug Deliv Transl Res 2018; 8:43-53. [PMID: 29079916 DOI: 10.1007/s13346-017-0432-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leuprolide acetate (LPA), a GnRH analogue, is drug of choice for treatment of uterine fibroids and endometriosis. The current marketed formulations of LPA show severe systemic side effects. This project aims to formulate LPA loaded liposomes to be administered by vaginal route for uterine targeting. Liposomes were prepared by thin film hydration method using 1:1 M ratio of DSPC: Cholesterol and characterized for vesicle size, zeta potential, entrapment efficiency, and loading. Radiolabeling of LPA was performed by direct labeling with reduced technetium-99m. Binding affinity of 99mTc-labeled complexes was assessed by diethylenetriaminepentaacetic acid (DTPA) challenge test. Biodistribution study was done in New Zealand white female rabbits by administering the formulation via vaginal route. Spherical and discrete vesicles of size 189 nm were seen in TEM results with entrapment efficiency and loading of 74.36% and 9.29%w/w, respectively. Liposomes were able to sustain the drug release for 5 days. 99mTc-labeled complexes showed high labeling efficiency and stability both in saline and serum. DTPA challenge test confirmed low transchelation of 99mTc-labeled complexes. Biodistribution study by gamma scintigraphy revealed the preferential uptake of the formulation by uterus when administered vaginally. Compared to plain drug, liposomes concentrated and were retained within the uterus for a longer period of time. Uterine targeting of liposomal LPA indicates its potential to overcome the limitations of presently available formulations. Hence, this seems to be a promising approach for targeting the drugs, whose site of action is uterus.
Collapse
Affiliation(s)
- Arpita Patel
- Shri G.H. Patel Pharmacy Building, Centre for Postgraduate Studies in Pharmacy, TIFAC Core in NDDS, Donor's Plaza, Fatehgunj, Vadodara, 390002, India
| | - Amit Tyagi
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Marg, Delhi, India
| | - Rakesh Kumar Sharma
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Marg, Delhi, India
| | - Hetal Thakkar
- Shri G.H. Patel Pharmacy Building, Centre for Postgraduate Studies in Pharmacy, TIFAC Core in NDDS, Donor's Plaza, Fatehgunj, Vadodara, 390002, India.
| |
Collapse
|
9
|
Pawar VA, Manjappa AS, Murumkar PR, Gajaria TK, Devkar RV, Mishra AK, Yadav MR. Drug-fortified liposomes as carriers for sustained release of NSAIDs: The concept and its validation in the animal model for the treatment of arthritis. Eur J Pharm Sci 2018; 125:11-22. [PMID: 30219410 DOI: 10.1016/j.ejps.2018.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/18/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug-fortified cationic liposomes of 6‑methoxy‑2‑naphthylacetic acid (6‑MNA) were prepared and characterized by various techniques. The residence time of drug-fortified liposomes in joint cavity was evaluated by intra-articular (IA) administration of the radio-labeled (99mTc) liposomal formulation in the inflamed joints in rats. The cationic liposomal formulation composed of 6‑MNA (3) as an active agent, its double salt (4) with the lipid 1,2‑distearoyl‑sn‑glycero‑3‑phosphoethanolamine (DSPE), and pharmaceutically acceptable excipients such as hydrogenated soyabean phospatidylcholine (HSPC) and 1,2‑dioleyloxy‑3‑trimethylammoniumpropane chloride (DOTAP) were developed using thin film hydration technique. The cryo-TEM analysis confirmed that the prepared optimized liposomal formulation (DFL-2) was a mixture of small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs) and multilamellar vesicles (MLVs). In addition, the TEM analysis confirmed that the prepared liposomes were of spherical in shape having liposome size in the range of 500-900 nm and zeta potential of about +30 mV. The developed cationic liposomes exhibited sustained release profile of payload of 6‑MNA for over >12 h and about five times higher retention in the inflamed animal joints after 24 h (by scintigraphy of the joints) as compared to the plain 6‑MNA solution when administered by IA route. The anti-inflammatory activity of prepared liposomal composition is evaluated by Freund's adjuvant induced arthritic model in rats. The liposomal formulation was well tolerated by all animals indicating good biocompatibility. Further, the cationic liposomal formulation treated group showed decreased erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) level in comparison to the control and the standard groups in the in vivo study. The improved efficacy of the drug-fortified liposomal formulation was due to the coupled effect of longer retention and sustained release of the active drug 6‑MNA in the joints. From the obtained results it could be concluded that the combined effect of the cationic charge on the drug-fortified liposomes and the inherent affinity of the active agent towards the synovial joint tissues, coupled with slow release of the active drug due to double salt approach at the site of administration could potentially decrease the frequency of IA drug administration. Hence such a formulation could prove to be a therapeutic boon for the management of late stage arthritis.
Collapse
Affiliation(s)
- Vijay A Pawar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, India
| | - Arehalli S Manjappa
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, India
| | - Tejal K Gajaria
- Division of Phytotherapeutics and Metabolic Endocrinology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390001, India
| | - Ranjisinh V Devkar
- Division of Phytotherapeutics and Metabolic Endocrinology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390001, India
| | - Anil K Mishra
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, New Delhi 110054, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, India.
| |
Collapse
|
10
|
Motaleb MA, Selim AA, El-Tawoosy M, Sanad MH, El-Hashash MA. Synthesis, characterization, radiolabeling and biodistribution of a novel cyclohexane dioxime derivative as a potential candidate for tumor imaging. Int J Radiat Biol 2018; 94:590-596. [DOI: 10.1080/09553002.2018.1466067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M. A. Motaleb
- Labeled Compounds Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Egypt
| | - Adli A. Selim
- Labeled Compounds Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Egypt
| | - M. El-Tawoosy
- Labeled Compounds Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Egypt
| | - M. H. Sanad
- Labeled Compounds Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Egypt
| | - M. A. El-Hashash
- Chemistry Department, Faculty of Science, Ain Shams University, Abassia, Cairo, Egypt
| |
Collapse
|
11
|
Dutta J, Naicker T, Ebenhan T, Kruger HG, Arvidsson PI, Govender T. Synthetic approaches to radiochemical probes for imaging of bacterial infections. Eur J Med Chem 2017; 133:287-308. [DOI: 10.1016/j.ejmech.2017.03.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
|
12
|
Kniess T, Laube M, Wüst F, Pietzsch J. Technetium-99m based small molecule radiopharmaceuticals and radiotracers targeting inflammation and infection. Dalton Trans 2017; 46:14435-14451. [DOI: 10.1039/c7dt01735a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
99mTc-labeled antibiotics, antifungal drugs, antimicrobial peptides and COX-2 inhibitors are comprehensively reviewed.
Collapse
Affiliation(s)
- Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- 01328 Dresden
- Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- 01328 Dresden
- Germany
| | - Frank Wüst
- University of Alberta
- Department of Oncology
- 11560 University Avenue
- Edmonton
- Canada
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- 01328 Dresden
- Germany
- Technische Universität Dresden
| |
Collapse
|