1
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
2
|
Lejwoda K, Gumieniczek A, Filip A, Naumczuk B. The Study on Timolol and Its Potential Phototoxicity Using Chemical, In Silico and In Vitro Methods. Pharmaceuticals (Basel) 2024; 17:98. [PMID: 38256931 PMCID: PMC10818944 DOI: 10.3390/ph17010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Timolol (TIM) is a non-selective ß-adrenergic receptor antagonist used orally for the treatment of hypertension and heart attacks, and topically for treating glaucoma; lately, it has also been used in some specific dermatological problems. In the present study, its photodegradation and potential risk of phototoxicity were examined using chemical, in silico and in vitro methods. The UV/VIS irradiated solutions of TIM at pH 1-13 were subjected to LC-UV and UPLC-HRMS/MS analyses showing pseudo first-order kinetics of degradation and several degradation products. The structures of these photodegradants were elucidated by fragmentation path analysis based on high resolution (HR) fragmentation mass spectra, and then used for toxicity evaluation using OSIRIS Property Explorer and Toxtree. Potential risk of phototoxicity was also studied using chemical tests for detecting ROS under UV/VIS irradiation and in vitro tests on BALB/c 3T3 mouse fibroblasts (MTT, NRU and Live/Dead tests). TIM was shown to be potentially phototoxic because of its UV/VIS absorptive properties and generation ROS during irradiation. As was observed in the MTT and NRU tests, the co-treatment of fibroblasts with TIM and UV/VIS light inhibited cell viability, especially when concentrations of the drug were higher than 50 µg/mL.
Collapse
Affiliation(s)
- Karolina Lejwoda
- Department of Medicinal Chemistry, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Anna Gumieniczek
- Department of Medicinal Chemistry, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Agata Filip
- Department of Cancer Genetics, Cytogenetics Laboratory, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Beata Naumczuk
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| |
Collapse
|
3
|
Rodrigues EA, Violin DS, Mastelaro VR, de Figueiredo Neves T, Prediger P. Removal of propranolol by membranes fabricated with nanocellulose/proanthocyanidin/modified tannic acid: The influence of chemical and morphologic features and mechanism study. Int J Biol Macromol 2024; 256:128268. [PMID: 38007017 DOI: 10.1016/j.ijbiomac.2023.128268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Polymer-based membranes containing nanocellulose and natural macromolecules have potential to treat water, however few works have associated the changes in chemical and morphological membrane's features with their performance as adsorbent. Herein, a new green composite based on nanocellulose (NC) and alkylated tannic acid (ATA) and cross-linked with proanthocyanidin was produced and incorporated into polyacrylonitrile (PAN) membranes to eliminate propranolol (PRO) from water. Characterizations revealed that the increasing of NC-ATA content reduced the pore size of the membrane's upper surface and made the finger like structure of the sublayer disappear, due to the formation of hydrophilic domains of NC/ATA which speeds up the external solidification step. The presence of NC-ATA reduced the hydrophilicity, from a water contact angle of 3.65° to 16.51°, the membrane roughness, from 223.5 to 52.0 nm, and the zeta potential from -25.35 to -55.20 mV, improving its features to be a suitable adsorbent of organic molecules. The membranes proved to be excellent green adsorbent, tridimensional, and easy to remove after use, and qmax for PRO was 303 mg·g-1. The adsorption mechanism indicates that H-bonds, ion exchange, and π-π play important role in adsorption. NC-ATA@PAN kept high removal efficiencies after four cycles, evidencing the potential for water purification.
Collapse
Affiliation(s)
| | - Daniel Silva Violin
- School of Technology, University of Campinas-UNICAMP, CEP: 13484-332 Limeira, São Paulo, Brazil
| | | | | | - Patricia Prediger
- School of Technology, University of Campinas-UNICAMP, CEP: 13484-332 Limeira, São Paulo, Brazil.
| |
Collapse
|
4
|
García-Valverde M, Aragonés AM, Andújar JAS, García MDG, Martínez-Bueno MJ, Fernández-Alba AR. Long-term effects on the agroecosystem of using reclaimed water on commercial crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160462. [PMID: 36435246 DOI: 10.1016/j.scitotenv.2022.160462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The use of reclaimed water for crop irrigation has been proposed as a suitable alternative for farmers in the coastal areas of Mediterranean countries, which suffer from greater water scarcity. In this work we study the impact on the water-soil-plant continuum of using reclaimed water for commercial crops irrigated over a long period, as well as the human risks associated with consuming the vegetables produced. Forty-four CECs were identified in the reclaimed water used for crop irrigation. Of these, twenty-four CECs were identified in the irrigated soil samples analysed. Tramadol, ofloxacin, tonalide, gemfibrozil, atenolol, caffeine, and cetirizine were the pharmaceuticals detected at the highest levels in the water samples (between 11 and 44 μg/L). The CECs with the highest average soil concentrations were tramadol (14.6 μg/kg), followed by cetirizine (13.2 μg/kg) and clarithromycin (12.7 μg/kg). In the irrigated vegetable samples analysed over the study period, carbamazepine, lidocaine, and caffeine were only detected at levels from 0.1 to 1.7 μg/kg. The CEC accumulation rate detected in the edible parts of the vegetables permanently irrigated with reclaimed water was very low (~1 %), whereas it was 33 % in the soils. The results revealed that consuming fruits harvested from plants irrigated for a long period with reclaimed water does not represent a risk to human health, opening the door to a circular economy of water. Nevertheless, for crop irrigation, future studies need to be conducted over longer periods and in other matrices to provide more scientific data on the safety of using reclaimed water.
Collapse
Affiliation(s)
- M García-Valverde
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - A M Aragonés
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - J A Salinas Andújar
- University of Almería, Department of Engineering, Agrifood Campus of International Excellence (ceiA3), La Cañada de San Urbano, 04120 Almería, Spain
| | - M D Gil García
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - M J Martínez-Bueno
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain.
| | - A R Fernández-Alba
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| |
Collapse
|
5
|
González-González RB, Sharma P, Singh SP, Américo-Pinheiro JHP, Parra-Saldívar R, Bilal M, Iqbal HMN. Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153329. [PMID: 35093347 DOI: 10.1016/j.scitotenv.2022.153329] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Pharmaceutical compounds are designed to elicit a biological reaction in specific organisms. However, they may also elicit a biological response in non-specific organisms when exposed to ambient quantities. Therefore, the potential human health hazards and environmental effects associated with pharmaceutically active compounds presented in aquatic environments are being studied by researchers all over the world. Owing to their broad-spectrum occurrence in various environmental matrices, direct or indirect environmental hazardous impacts, and human-health related consequences, several pharmaceutically active compounds have been categorized as emerging contaminants (ECs) of top concern. ECs are often recalcitrant and resistant to abate from water matrices. In this review, we have examined the classification, occurrence, and environmental hazards of pharmaceutically active compounds. Moreover, because of their toxicity and the inefficiency of wastewater treatment plants to remove pharmaceutical pollutants, novel wastewater remediation technologies are urgently required. Thus, we have also analyzed the recent advances in microbes-assisted bioremediation as a suitable, cost-effective, and eco-friendly alternative for the decontamination of pharmaceutical pollutants. Finally, the most important factors to reach optimal bioremediation are discussed.
Collapse
Affiliation(s)
| | - Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow 226 025, Uttar Pradesh, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208 001, India
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
6
|
Eshaq G, M A, Khan MA, Alothman ZA, Sillanpää M. A novel Sm doped Cr 2O 3 sesquioxide-decorated MWCNTs heterostructured Fenton-like with sonophotocatalytic activities under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127812. [PMID: 34844808 DOI: 10.1016/j.jhazmat.2021.127812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Novel Sm doped Cr2O3 decorated MWCNTs nanocomposite photocatalyst was successfully prepared by a facile hydrothermal method for metoprolol (MET) degradation. A heterogeneous photo -Fenton like system was formed with the addition of H2O2 for ultrasonic irradiation (US), visible light irradiation (Vis) and dual irradiation (US/Vis) systems. The intrinsic characteristics of Sm doped Cr2O3 decorated MWCNTs nanocomposite was comprehensively performed using state-of-art characterization tools. Optical studies confirmed that Sm doping shifted the absorbance of Cr2O3 towards the visible-light region, further enhanced by MWCNTs incorporation. In this study, degradation of metoprolol (MET) was investigated in the presence of Cr2O3 nanoparticles, Sm doped Cr2O3 and Sm doped Cr2O3 decorated MWCNTs nanocomposites using sonocatalysis and photocatalysis and simultaneously. Several different experimental parameters, including irradiation time, H2O2 concentration, catalyst amount, initial concentration, and pH value, were optimized. The remarkably enhanced sonophotocatalytic activity of Sm doped Cr2O3 decorated MWCNTs could be attributed to the more formation of reactive radicals and the excellent electronical property of Sm doping and MWCNTs. The rate constant of degradation using sonophotocatalytic system was even higher than the sum of rates of individual systems due to its synergistic performance based on the kinetic data. A plausible mechanism for the degradation of MET over Sm-Cr2O3/MWCNTs is also demonstrated by using active species scavenger studies and EPR spectroscopy. Our findings imply that (•OH), (h+) and (•O2-) were the reactive species responsible for the degradation of MET based on the special three-way Fenton-like mechanism and the dissociation of H2O2. The durability and stability of the nanocomposite were also performed, and the obtained results revealed that the catalysts can endure the harsh sonophotocatalytic conditions even after fifth cycles. Mineralization experiments using the optimized parameters were evaluated as well. The kinetics and the reaction mechanism with the possible reasons for the synergistic effect were presented. Identification of degraded intermediates also investigated.
Collapse
Affiliation(s)
- Gh Eshaq
- Department of Separation Science, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland; Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Amer M
- Division of Cardiac Surgery, Heart Centre Siegburg-Wuppertal, University Witten, Herdecke, Germany
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zeid A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh, 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Nájera-Aguilar HA, Mayorga-Santis R, Gutiérrez-Hernández RF, Santiesteban-Hernández A, Rodríguez-Valadez FJ, Ulloa-Gutiérrez DA, Araiza-Aguilar JA, Cruz-Salomón A. Propranolol degradation through processes based on the generation of hydroxyl free radical. JOURNAL OF WATER AND HEALTH 2022; 20:216-226. [PMID: 35100169 DOI: 10.2166/wh.2021.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pharmaceutical substances such as propranolol (PRO) are an emerging class of aquatic contaminants that have increasingly been detected in ground and surface water. For this reason, the aim of this study was to evaluate the efficiency of advanced oxidation systems for the PRO degradation. The tests started with anodic oxidation (AO), using 0.01, 0.05, and 0.1 M Na2SO4 as the supporting electrolyte and 16, 32, 48, and 64 mA cm-2 as current density. Under the best conditions obtained in AO, the electro-Fenton (EF) process was reviewed, where the effect of Fe2+ was analyzed with 5, 10, 15, and 20 mg Fe2+ L-1. The Fenton reaction (FR) was studied using the Fe2+ concentration that promoted the highest percentage of PRO removal and initial concentration of 16 mg L-1 of H2O2, in addition to these conditions, in the photo-Fenton (PF) system, the effect of UV light with wavelengths 254 and 365 nm were evaluated. The results obtained showed that the degradation efficiency of the EF > AO > PF > FR system along with a percent removal of 94.52, 90.4, 25.97, and 4.4%, respectively. The results showed that PRO can be removed through the studied systems, with the EF system being the most efficient.
Collapse
Affiliation(s)
- Hugo Alejandro Nájera-Aguilar
- Facultad de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente No. 1150, Col. Lajas, Maciel, Tuxtla Gutiérrez, Chiapas 29000, México
| | - Rosario Mayorga-Santis
- Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México Campus Tapachula, Km. 2 carretera a Puerto Madero s/n., Tapachula, Chiapas 30700, México E-mail:
| | - Rubén Fernando Gutiérrez-Hernández
- Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México Campus Tapachula, Km. 2 carretera a Puerto Madero s/n., Tapachula, Chiapas 30700, México E-mail:
| | - Antonio Santiesteban-Hernández
- El Colegio de la Frontera Sur, Grupo de Ecología de Artrópodos y Manejo de Plagas, carretera antiguo aeropuerto km 2.5, Tapachula, Chiapas 30700, México
| | - Francisco J Rodríguez-Valadez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C., Parque Tecnológico Querétaro Sanfandila, P.O. Box 064, Pedro Escobedo, Querétaro 76703, México
| | | | - Juan Antonio Araiza-Aguilar
- Facultad de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente No. 1150, Col. Lajas, Maciel, Tuxtla Gutiérrez, Chiapas 29000, México
| | - Abumalé Cruz-Salomón
- Escuela de Ciencias Químicas, sede Ocozocoautla, Universidad Autónoma de Chiapas (UNACH), Carretera Panamericana Ocozocoautla-Cintalapa Km. 2.5, Ocozocoautla de Espinosa, Chiapas 29140, México
| |
Collapse
|
8
|
Nazarkovsky M, Czech B, Żmudka A, Bogatyrov VM, Artiushenko O, Zaitsev V, Saint-Pierre TD, Rocha RC, Kai J, Xing Y, Gonçalves WD, Veiga AG, Rocco MLM, Safeer SH, Galaburda MV, Carozo V, Aucélio RQ, Caraballo-Vivas RJ, Oranska OI, Dupont J. Structural, optical and catalytic properties of ZnO-SiO2 colored powders with the visible light-driven activity. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Zhang H, Ma J, Shi M, Xia M, Wang F, Fu C. Adsorption of two β-blocker pollutants on modified montmorillonite with environment-friendly cationic surfactant containing amide group: Batch adsorption experiments and Multiwfn wave function analysis. J Colloid Interface Sci 2021; 590:601-613. [PMID: 33582363 DOI: 10.1016/j.jcis.2021.01.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
The novel environment-friendly hexadecanoamide propyltrimethy lammonium chloride (NQAS16-3) surfactant with different amounts (0.2, 0.4, 0.6, 0.8, 1.0, 1.2 CEC) was firstly used to modify montmorillonite, and the obtained organomontmorillonite (N-Mt) with the amount of surfactant equal to 1.0 CEC was utilized to adsorb two β-blocker pollutants- Atenolol (ATE) and acebutolol (ACE). The experimental results indicated that the equilibrium adsorption capacity of N-Mt(the organo-montmorillonite that the amount of modifier was 1.0 CEC) for ATE and ACE was 93.47 mg/g and 84.55 mg/g, respectively, which was more than twice that of raw montmorillonite for two pollutants, the adsorption was better fitted with the pseudo-second-order model and Langmuir isotherms model, and the adsorption was the spontaneous and exothermic process. Moreover, combining with the Zeta potential values of N-Mt, and with the help of Multiwfn wave function program based on density functional theory (DFT), the electrostatic interaction and the hydrophobic partitioning between N-Mt and two pollutant molecules were verified, p-π/π interaction between NQAS16-3 and ATE (or ACE) may be contributed to the increasing adsorption capacity of N-Mt for two β-blocker pollutants. The work provided novel organomontmorillonite for the removal of non-degradable β-blocker pollutants and the insight of the adsorption mechanism from the atomic level.
Collapse
Affiliation(s)
- Hongling Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing 210042, China.
| | - Jianzhe Ma
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingxing Shi
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingzhu Xia
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chenlu Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
10
|
Srikanth B, Goutham R, Badri Narayan R, Ramprasath A, Gopinath KP, Sankaranarayanan AR. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 200:60-78. [PMID: 28570937 DOI: 10.1016/j.jenvman.2017.05.063] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 05/20/2023]
Abstract
The aim of this paper is to provide a review on the usage of different anchoring media (supports) for immobilising commonly employed photocatalysts for degradation of organic pollutants. The immobilisation of nano-sized photocatalysts can eliminate costly and impractical post-treatment recovery of spent photocatalysts in largescale operations. Some commonly employed immobilisation aids such as glass, carbonaceous substances, zeolites, clay and ceramics, polymers, cellulosic materials and metallic agents that have been previously discussed by various research groups have been reviewed. The study revealed that factors such as high durability, ease of availability, low density, chemical inertness and mechanical stability are primary factors responsible for the selection of suitable supports for catalysts. Common techniques for immobilisation namely, dip coating, cold plasma discharge, polymer assisted hydrothermal decomposition, RF magnetron sputtering, photoetching, solvent casting, electrophoretic deposition and spray pyrolysis have been discussed in detail. Finally, some common techniques adopted for the characterisation of the catalyst particles and their uses are also discussed.
Collapse
Affiliation(s)
- B Srikanth
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - R Goutham
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - R Badri Narayan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - A Ramprasath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - K P Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India.
| | - A R Sankaranarayanan
- Department of Civil Architectural and Environmental Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|