1
|
Torres Fredes IP, Cortés-Adasme EN, Barrientos BA, Real JP, Gomez CG, Palma SD, Kogan MJ, Real DA. 3D-Printed Plasmonic Nanocomposites: VAT Photopolymerization for Photothermal-Controlled Drug Release. Pharmaceuticals (Basel) 2024; 17:1453. [PMID: 39598365 PMCID: PMC11597631 DOI: 10.3390/ph17111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Gold nanoparticles can generate heat upon exposure to radiation due to their plasmonic properties, which depend on particle size and shape. This enables precise control over the release of active substances from polymeric pharmaceutical formulations, minimizing side effects and premature release. The technology of 3D printing, especially vat photopolymerization, is valuable for integrating nanoparticles into complex formulations. METHOD This study aimed to incorporate gold nanospheres (AuNSs) and nanorods (AuNRs) into polymeric matrices using vat photopolymerization, allowing for controlled drug release with exposure to 532 nm and 1064 nm wavelengths. RESULTS The AuNSs (27 nm) responded to 532 nm and the NRs (60 nm length, 10 nm width) responded to 1064 nm. Niclosamide was used as the drug model. Ternary blends of Polyethylene Glycol Diacrylate 250 (PEGDA 250), Polyethylene Glycol 400 (PEG 400), and water were optimized using DesignExpert 11 software for controlled drug release upon specific wavelength exposure. Three matrices, selected based on solubility and printability, underwent rigorous characterization. Two materials achieved controlled drug release with specific wavelengths. Bilayer devices combining AuNSs and AuNRs demonstrated selective drug release based on irradiation wavelength. CONCLUSIONS A pharmaceutical device was developed, capable of controlling drug release upon irradiation, with potential applications in treatments requiring delayed administration.
Collapse
Affiliation(s)
- Ignacia Paz Torres Fredes
- Department of Pharmacological and Toxicological Chemistry, University of Chile, Santos Dumont 964, Santiago 8380494, Chile; (I.P.T.F.); (E.N.C.-A.)
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, IndePendencia, Santiago 8380494, Chile
| | - Elizabeth Nicole Cortés-Adasme
- Department of Pharmacological and Toxicological Chemistry, University of Chile, Santos Dumont 964, Santiago 8380494, Chile; (I.P.T.F.); (E.N.C.-A.)
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, IndePendencia, Santiago 8380494, Chile
| | - Bruno Andrés Barrientos
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina; (B.A.B.); (J.P.R.); (S.D.P.)
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina
| | - Juan Pablo Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina; (B.A.B.); (J.P.R.); (S.D.P.)
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina
| | - Cesar Gerardo Gomez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000XHUA, Argentina;
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina; (B.A.B.); (J.P.R.); (S.D.P.)
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina
| | - Marcelo Javier Kogan
- Department of Pharmacological and Toxicological Chemistry, University of Chile, Santos Dumont 964, Santiago 8380494, Chile; (I.P.T.F.); (E.N.C.-A.)
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, IndePendencia, Santiago 8380494, Chile
| | - Daniel Andrés Real
- Department of Pharmacological and Toxicological Chemistry, University of Chile, Santos Dumont 964, Santiago 8380494, Chile; (I.P.T.F.); (E.N.C.-A.)
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, IndePendencia, Santiago 8380494, Chile
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina; (B.A.B.); (J.P.R.); (S.D.P.)
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina
| |
Collapse
|
2
|
Chekkaramkodi D, Ahmed I, Jacob L, Butt H. 3D printed UV-sensing optical fiber probes: manufacturing, properties, and performance. Sci Rep 2024; 14:19001. [PMID: 39152177 PMCID: PMC11329506 DOI: 10.1038/s41598-024-69872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
UV sensing 3D printed optical fiber hydrogels provide a flexible and precise method of remotely of detecting exposure to UV radiations. The optical fibers were created using digital light processing 3D printing technique with hydrogel composites, including micro-sized photochromic dyes (pink, blue and their combination). When exposed to ultraviolet (UV) radiation, these dyes exhibited specific absorption characteristics, resulting in significant decreases in both reflection and transmittance mode spectra at 560 nm, 620 nm, and 590 nm. Optical fibers of lengths 1, 2, and 3 cm were manufactured in two orientations: vertical and horizontal. Scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction were utilized to characterize the printed fiber probes. The optical performance of the fibers was tested using customized measurement setups. The reflection and transmission of the printed fibers reduced as the length increased due to optical losses. Reflection and transmisson loss of 20-40% can be observed when the length is increased from 1 to 3 cm. The maximum loss in reflection is observed for pink fiber in the presence of UV irradiation. Also, the type of powder used impacted the response and retraction time, whereas the mixed fiber showed the highest response time of 12-20 s under various conditions. The pink dye added fiber probes shows quick response to UV radiation. An increase in the response time is observed with increasing fiber length. The impact of printing orientation on the transmission and reflectance mode operations of optical fibers was assessed. In addition, the stability of the fiber probes are assesed using a green laser having wavelength 532 nm. This work comprehensively examines the optical properties, manufacturing procedures, and sensing capacities of UV-sensitive photochromic optical fiber sensors.
Collapse
Affiliation(s)
- Dileep Chekkaramkodi
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.
| | - Israr Ahmed
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Liya Jacob
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Haider Butt
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
3
|
Kumar R, Tewari A, Parashar A. Thermal Transport Phenomena in PEGDA-Based Nanocomposite Hydrogels Using Atomistic and Experimental Techniques. J Phys Chem B 2024; 128:5254-5267. [PMID: 38770752 DOI: 10.1021/acs.jpcb.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) hydrogel is a very peculiar, fascinating material with good chemical stability and biocompatibility. However, the poor thermal transport phenomenon in PEGDA, limits its performance in cartilage replacement and developing therapies for treating burns. In this article, a combined experimental and atomistic approach was adopted to investigate the thermal transport phenomena in PEGDA hydrogel with different weight concentrations of boron nitride nanoplatelets as a function of water content. The incorporation of boron nitride nanofillers helps in enhancing the thermal conductivity of PEGDA hydrogels, and the reinforcement effect was more dominating at lower water content. Experimental investigation was complemented with molecular dynamics-based studies to capture the effect of defective (bicrystalline) boron nitride nanosheets on the interfacial thermal conductance in PEGDA hydrogels. It can be concluded from the simulations that defective nanosheets are superior reinforcement for enhancing the thermal transport in PEGDA hydrogels, and this is independent of the water content. These biocompatible boron nitride nanoparticle (BNNP)-incorporated PEGDA hydrogels with enhanced thermal conductivity are promising materials in addressing locally overheating tissues such as cartilage replacement. They may have comprehensive utility for biomedical applications such as tissue engineering, drug delivery, biosensors, and burn therapy.
Collapse
|
4
|
Perasoli FB, B Silva LS, C Figueiredo BI, Pinto IC, F Amaro LJ, S Almeida Bastos JC, Carneiro SP, R Araújo VP, G Beato FR, M Barboza AP, M Teixeira LF, Gallagher MP, Bradley M, Venkateswaran S, H dos Santos OD. Poly(methylmethacrylate-co-dimethyl acrylamide)-silver nanocomposite prevents biofilm formation in medical devices. Nanomedicine (Lond) 2024; 19:1285-1296. [PMID: 38722243 PMCID: PMC11285241 DOI: 10.1080/17435889.2024.2345044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 07/25/2024] Open
Abstract
Aim: To investigate whether medical devices coated with a synthesized nanocomposite of poly(methylmethacrylate-co-dimethyl acrylamide) (PMMDMA) and silver nanoparticles (AgNPs) could improve their antibiofilm and antimicrobial activities. We also investigated the nanocomposite's safety. Materials & methods: The nanocomposite was synthesized and characterized using analytical techniques. Medical devices coated with the nanocomposite were evaluated for bacterial adhesion and hemolytic activity in vitro. Results: The nanocomposite formation was demonstrated with the incorporation of AgNPs into the polymer matrix. The nanocomposite proved to be nonhemolytic and significantly inhibited bacterial biofilm formation. Conclusion: The PMMDMA-AgNPs nanocomposite was more effective in preventing biofilm formation than PMMDMA alone and is a promising strategy for coating medical devices and reducing mortality due to hospital-acquired infections.
Collapse
Affiliation(s)
- Fernanda B Perasoli
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Luan S B Silva
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Bruna I C Figueiredo
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Isabelle C Pinto
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Lorrane J F Amaro
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Juliana C S Almeida Bastos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Simone P Carneiro
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vânia P R Araújo
- Nano Lab, Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Felipe R G Beato
- Laboratório de Microscopia, Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Ana P M Barboza
- Laboratório de Microscopia, Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Luiz F M Teixeira
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maurice P Gallagher
- School of Biological Sciences, University of Edinburgh, King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, London, E1 1HH, UK
| | - Seshasailam Venkateswaran
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, London, E1 1HH, UK
| | - Orlando D H dos Santos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
5
|
Xiao S, Lao Y, Liu H, Li D, Wei Q, Ye L, Lu S. A nanocomposite hydrogel loaded with Ag nanoparticles reduced by aloe vera polysaccharides as an antimicrobial multifunctional sensor. Int J Biol Macromol 2024; 267:131541. [PMID: 38614183 DOI: 10.1016/j.ijbiomac.2024.131541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Developing high-performance hydrogels with anti-freeze, and antimicrobial properties is crucial for the practical application of flexible sensors. In this study, we prepared silver nanoparticles (AgNPs) with aloe polysaccharide (AP) as a reducing agent. Then, the AP/AgNPs were added to a system of polyvinyl alcohol and borax crosslinked in water/glycerol to obtain a multifunctional conductive hydrogel. The incorporated AgNPs improved the conductivity (0.39 S/m) and mechanical properties (elongation at break: 732.9 %, fracture strength: 1267.6 kPa) of the hydrogel. In addition, resultant hydrogel exhibited potential for sensing strain, temperature, and humidity. When used as a strain sensor, the hydrogel system exhibited low detection limit (0.1 %), and fast response (0.08 s). The resistance of the hydrogel decreased with an increase in the absorbed moisture content, enabling humidity detection (25-95 %) to monitor breathing status. As a temperature sensor, the hydrogel supported a wide detection range (-50 to +90 °C) and sensitivity (-30-0 °C, temperature coefficient of resistance (TCR) = -5.64 %/°C) to detect changes in the ambient temperature. This study proposes a simple method for manufacturing multifunctional hydrogel sensors, which broadens their application prospects in wearable sensing and electronic products.
Collapse
Affiliation(s)
- Suijun Xiao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Yufei Lao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Hongbo Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Dacheng Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Qiaoyan Wei
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Liangdong Ye
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
6
|
Simeonov M, Kostova B, Vassileva E. Interpenetrating Polymer Networks of Poly(2-hydroxyethyl methacrylate) and Poly(N, N-dimethylacrylamide) as Potential Systems for Dermal Delivery of Dexamethasone Phosphate. Pharmaceutics 2023; 15:2328. [PMID: 37765296 PMCID: PMC10538039 DOI: 10.3390/pharmaceutics15092328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, a series of novel poly(2-hydroxyethyl methacrylate) (PHEMA)/poly(N,N'-dimethylacrylamide) (PDMAM) interpenetrating polymer networks (IPNs) were synthesized and studied as potential drug delivery systems of dexamethasone sodium phosphate (DXP) for dermal application. The IPN composition allows for control over its swelling ability as the incorporation of the highly hydrophilic PDMAM increases more than twice the IPN swelling ratio as compared to the PHEMA single networks, namely from ~0.5 to ~1.1. The increased swelling ratio of the IPNs results in an increased entrapment efficiency up to ~30% as well as an increased drug loading capacity of DXP up to 4.5%. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) show the formation of a solid dispersion between the drug DXP and the polymer (IPNs) matrix. Energy-dispersive X-ray (EDX) spectroscopy shows an even distribution of DXP within the IPN structure. The DXP release follows Fickian diffusion with ~70% of DXP released in 24 h. This study demonstrates the potential of the newly developed IPNs for the dermal delivery of DXP.
Collapse
Affiliation(s)
- Marin Simeonov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier blvd., 1164 Sofia, Bulgaria;
| | - Bistra Kostova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav str., 1000 Sofia, Bulgaria
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
7
|
Kabalan Y, Montané X, Tylkowski B, De la Flor S, Giamberini M. Design and assembly of biodegradable capsules based on alginate hydrogel composite for the encapsulation of blue dye. Int J Biol Macromol 2023; 233:123530. [PMID: 36736972 DOI: 10.1016/j.ijbiomac.2023.123530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The encapsulation of bluing agents in biodegradable polymeric capsules is an emerging option in laundry detergents sector to substitute formaldehyde-based polymers, because they are non-biodegradable, carcinogenic and toxic. In this work, we present for the first time the successful encapsulation of a blue dye in biodegradable capsules which shell was formed by an alginate hydrogel and a polyethylene glycol network. Different types of capsules were synthesized (addition or not of the diacrylate monomer) and irradiation of the crosslinking solution at different times. Furthermore, a deep characterization of each type of capsules was performed (chemical and morphological characterization, assessment of their mechanical and thermal properties, evaluation of their biodegradability), noting that the incorporation of the diacrylate monomer (PEGDMA) and the two different irradiation times selected substantially affected the final properties of the capsules. The obtained results will serve to comprehend how the dye can be released from the capsules.
Collapse
Affiliation(s)
- Yasmin Kabalan
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain
| | - Xavier Montané
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de la Química de Catalunya, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain
| |
Collapse
|
8
|
Babić Radić MM, Filipović VV, Vuković JS, Vukomanović M, Ilic-Tomic T, Nikodinovic-Runic J, Tomić SL. 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform. Polymers (Basel) 2023; 15:polym15071643. [PMID: 37050256 PMCID: PMC10097359 DOI: 10.3390/polym15071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The idea of this study was to create a new scaffolding system based on 2-hydroxyethyl methacrylate, gelatin, and alginate that contains titanium(IV) oxide nanoparticles as a platform for the controlled release of the bioactive agent curcumin. The innovative strategy to develop hybrid scaffolds was the modified porogenation method. The effect of the scaffold composition on the chemical, morphology, porosity, mechanical, hydrophilicity, swelling, degradation, biocompatibility, loading, and release features of hybrid scaffolds was evaluated. A porous structure with interconnected pores in the range of 52.33–65.76%, favorable swelling capacity, fully hydrophilic surfaces, degradability to 45% for 6 months, curcumin loading efficiency above 96%, and favorable controlled release profiles were obtained. By applying four kinetic models of release, valuable parameters were obtained for the curcumin/PHEMA/gelatin/alginate/TiO2 release platform. Cytotoxicity test results depend on the composition of the scaffolds and showed satisfactory cell growth with visible cell accumulation on the hybrid surfaces. The constructed hybrid scaffolds have suitable high-performance properties, suggesting potential for further in vivo and clinical studies.
Collapse
|
9
|
Pereyra JYDC, Barbero CA, Acevedo DF, Yslas EI. Antibacterial effects of in situzinc oxide nanoparticles generated inside the poly (acrylamide-co-hydroxyethylmethacrylate) nanocomposite. NANOTECHNOLOGY 2022; 34:045101. [PMID: 36215962 DOI: 10.1088/1361-6528/ac98cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The present work reports the antibacterial activity againstPseudomonasaeruginosaof a nanocomposite made of zinc oxide nanoparticles dispersed in a poly(acrylamide-co-hydroxyethylmethacrylate) matrix (PAAm-Hema-ZnONPs). Thein situsynthesis of ZnONPs inside of the PAAm-Hema crosslinked network is described. Moreover, the physicochemical properties of the PAAm-Hema-ZnONPs nanocomposite are analyzed. The results confirm that the PAAm-Hema hydrogel provides an excellent scaffold to generate ZnONPs. The presence of ZnONPs inside the hydrogel was confirmed by UV-visible (band at 320 nm), by Infrared spectroscopy (peak at 470 cm-1), SEM, and TEM images. The presence of NPs in PAAm-Hema diminish the swelling percentage by 70%, and the Young modulus by 33.7%, compared with pristine hydrogel. The 75% of ZnONPs are released from the nanocomposite after 48 h of spontaneous diffusion, allowing the use of the nanocomposite as an antibacterial agent.In vitro, the agar diffusion test presents an inhibition halo againstP. aeruginosabacteria 50% higher than the unloaded hydrogel. Also, the PAAm-Hema-ZnONPs live/dead test shows 54% of dead cells more than the hydrogel. These results suggest that the easy, one-step way generated composites can be used in biomedical applications as antimicrobial agents.
Collapse
Affiliation(s)
- J Y Del C Pereyra
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Ruta Nacional N◦ 36, Km 601, Río Cuarto (Córdoba) 5800, Argentina
- Chemistry Department, FCEFQyN-National University of Río Cuarto, Río Cuarto (Córdoba) 5800, Argentina
| | - C A Barbero
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Ruta Nacional N◦ 36, Km 601, Río Cuarto (Córdoba) 5800, Argentina
- Chemistry Department, FCEFQyN-National University of Río Cuarto, Río Cuarto (Córdoba) 5800, Argentina
| | - D F Acevedo
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Ruta Nacional N◦ 36, Km 601, Río Cuarto (Córdoba) 5800, Argentina
- Chemical Technology Department, Faculty of Engineering, National University of Río Cuarto, Río Cuarto (Córdoba) 5800, Argentina
| | - E I Yslas
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Ruta Nacional N◦ 36, Km 601, Río Cuarto (Córdoba) 5800, Argentina
- Molecular Biology Department, FCEFQyN-National University of Río Cuarto, Río Cuarto (Córdoba) 5800, Argentina
| |
Collapse
|
10
|
Scroccarello A, Della Pelle F, Del Carlo M, Compagnone D. Optical plasmonic sensing based on nanomaterials integrated in solid supports. A critical review. Anal Chim Acta 2022; 1237:340594. [DOI: 10.1016/j.aca.2022.340594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
11
|
Palucci Rosa R, Rosace G, Arrigo R, Malucelli G. Preparation and Characterization of 3D-Printed Biobased Composites Containing Micro- or Nanocrystalline Cellulose. Polymers (Basel) 2022; 14:polym14091886. [PMID: 35567055 PMCID: PMC9105471 DOI: 10.3390/polym14091886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023] Open
Abstract
Stereolithography (SLA), one of the seven different 3D printing technologies, uses photosensitive resins to create high-resolution parts. Although SLA offers many advantages for medical applications, the lack of biocompatible and biobased resins limits its utilization. Thus, the development of new materials is essential. This work aims at designing, developing, and fully characterizing a bio-resin system (made of poly(ethylene glycol) diacrylate (PEGDA) and acrylated epoxidized soybean oil (AESO)), filled with micro- or nanocellulose crystals (MCC and CNC), suitable for 3D printing. The unfilled resin system containing 80 wt.% AESO was identified as the best resin mixture, having a biobased content of 68.8%, while ensuring viscosity values suitable for the 3D printing process (>1.5 Pa s). The printed samples showed a 93% swelling decrease in water, as well as increased tensile strength (4.4 ± 0.2 MPa) and elongation at break (25% ± 2.3%). Furthermore, the incorporation of MCC and CNC remarkably increased the tensile strength and Young’s modulus of the cured network, thus indicating a strong reinforcing effect exerted by the fillers. Lastly, the presence of the fillers did not affect the UV-light penetration, and the printed parts showed a high quality, thus proving their potential for precise applications.
Collapse
Affiliation(s)
- Raphael Palucci Rosa
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, Dalmine, 24044 Bergamo, Italy
- Correspondence:
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Local INSTM Unit, Viale Marconi 5, Dalmine, 24044 Bergamo, Italy;
| | - Rossella Arrigo
- Department of Applied Science and Technology, Politecnico di Torino, Local INSTM Unit, Viale T. Michel 5, Provincia di Alessandria, 15121 Alessandria, Italy; (R.A.); (G.M.)
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, Local INSTM Unit, Viale T. Michel 5, Provincia di Alessandria, 15121 Alessandria, Italy; (R.A.); (G.M.)
| |
Collapse
|
12
|
Magalhães LSSM, Andrade DB, Bezerra RDS, Morais AIS, Oliveira FC, Rizzo MS, Silva-Filho EC, Lobo AO. Nanocomposite Hydrogel Produced from PEGDA and Laponite for Bone Regeneration. J Funct Biomater 2022; 13:53. [PMID: 35645261 PMCID: PMC9149996 DOI: 10.3390/jfb13020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/03/2023] Open
Abstract
Herein, a nanocomposite hydrogel was produced using laponite and polyethylene-glycol diacrylate (PEGDA), with or without Irgacure (IG), for application in bone tissue regeneration. The nanocomposites were characterized by X-ray diffraction (XRD), Fourier-Transform infrared spectroscopy (FTIR), and thermal analysis (TG/DTG). The XRD results showed that the crystallographic structure of laponite was preserved in the nanocomposite hydrogels after the incorporation of PEGDA and IG. The FTIR results indicated that PEGDA polymer chains were entangled on laponite in hydrogels. The TG/DTG found that the presence of laponite (Lap) improved the thermal stability of nanocomposite hydrogel. The toxicity tests by Artemia salina indicated that the nanocomposite hydrogels were not toxic, because the amount of live nauplii was 80.0%. In addition, in vivo tests demonstrated that the hydrogels had the ability to regenerate bone in a bone defect model of the tibiae of osteopenic rats. For the nanocomposite hydrogel (PEGDA + Lap nanocomposites + UV light), the formation of intramembranous bone in the soft callus was more intense in 66.7% of the animals. Thus, the results presented in this study evidence that nanocomposite hydrogels obtained from laponite and PEGDA have the potential for use in bone regeneration.
Collapse
Affiliation(s)
- Leila S. S. M. Magalhães
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | - Danielle B. Andrade
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, Brazil;
| | - Roosevelt D. S. Bezerra
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, Brazil;
| | - Alan I. S. Morais
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | | | - Márcia S. Rizzo
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | - Edson C. Silva-Filho
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | - Anderson O. Lobo
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| |
Collapse
|
13
|
Radulescu DM, Neacsu IA, Grumezescu AM, Andronescu E. New Insights of Scaffolds Based on Hydrogels in Tissue Engineering. Polymers (Basel) 2022; 14:799. [PMID: 35215710 PMCID: PMC8875010 DOI: 10.3390/polym14040799] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, biomaterials development and characterization for new applications in regenerative medicine or controlled release represent one of the biggest challenges. Tissue engineering is one of the most intensively studied domain where hydrogels are considered optimum applications in the biomedical field. The delicate nature of hydrogels and their low mechanical strength limit their exploitation in tissue engineering. Hence, developing new, stronger, and more stable hydrogels with increased biocompatibility, is essential. However, both natural and synthetic polymers possess many limitations. Hydrogels based on natural polymers offer particularly high biocompatibility and biodegradability, low immunogenicity, excellent cytocompatibility, variable, and controllable solubility. At the same time, they have poor mechanical properties, high production costs, and low reproducibility. Synthetic polymers come to their aid through superior mechanical strength, high reproducibility, reduced costs, and the ability to regulate their composition to improve processes such as hydrolysis or biodegradation over variable periods. The development of hydrogels based on mixtures of synthetic and natural polymers can lead to the optimization of their properties to obtain ideal scaffolds. Also, incorporating different nanoparticles can improve the hydrogel's stability and obtain several biological effects. In this regard, essential oils and drug molecules facilitate the desired biological effect or even produce a synergistic effect. This study's main purpose is to establish the main properties needed to develop sustainable polymeric scaffolds. These scaffolds can be applied in tissue engineering to improve the tissue regeneration process without producing other side effects to the environment.
Collapse
Affiliation(s)
- Denisa-Maria Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-M.R.); (A.-M.G.); (E.A.)
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-M.R.); (A.-M.G.); (E.A.)
- Academy of Romanian Scientists, 54 Independentei, 050094 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-M.R.); (A.-M.G.); (E.A.)
- Academy of Romanian Scientists, 54 Independentei, 050094 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-M.R.); (A.-M.G.); (E.A.)
- Academy of Romanian Scientists, 54 Independentei, 050094 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
14
|
Development of New Hybrid Casein-Loaded PHEMA-PEGDA Hydrogels with Enhanced Mineralisation Potential. MATERIALS 2022; 15:ma15030840. [PMID: 35160786 PMCID: PMC8836935 DOI: 10.3390/ma15030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Casein is a micellar protein rich in glutamic and aspartic acids as well as in phosphoserine. Considering its native affinity for calcium and the connection of sub-micelles through calcium phosphate nanoclusters, this protein holds promise for stimulating biomimetic mineralisation phenomena and direct binding with the mineral phase of hard tissues. In this work we prepared new hybrids based on casein embedded in a poly(2-hydroxyethyl methacrylate)-polyethyleneglycol diacrylate (PHEMA-PEGDA) hydrogel. The resulting materials were investigated structurally by Fourier transform infrared (FT-IR). Casein modified the water affinity and the rheological properties of the hybrids. The microstructure was explored by scanning electron microscopy (SEM) and the distribution of the protein was established by combined SEM micrographs and elemental mapping considering the casein-specific elements (P, N and S) not contained by the synthetic hydrogel matrix. The effect of casein on the mineralisation potential and stability of the mineral phase was investigated by FT-IR and SEM when alternating incubation in Ca/P solutions is performed. Increasing casein content in the hybrids leads to improved mineralisation, with localised formation of nanoapatite phase on the protein areas in the richest sample in protein. This behaviour was proved microstructurally by SEM and through overlapping elemental distribution of Ca and P from the newly formed mineral and P, S and N from the protein. This study indicates that nanoapatite-casein-PHEMA-PEGDA nanocomposites may be developed for potential use in bone repair and regeneration.
Collapse
|
15
|
Thiol-ene click synthesis of adsorption functionalized poly(ionic liquid)s: influence of the mole fraction of pendant enes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Affatato S, Trucco D, Taddei P, Vannozzi L, Ricotti L, Nessim GD, Lisignoli G. Wear Behavior Characterization of Hydrogels Constructs for Cartilage Tissue Replacement. MATERIALS (BASEL, SWITZERLAND) 2021; 14:428. [PMID: 33467142 PMCID: PMC7830039 DOI: 10.3390/ma14020428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
This paper aims to characterize the wear behavior of hydrogel constructs designed for human articular cartilage replacement. To this purpose, poly (ethylene glycol) diacrylate (PEGDA) 10% w/v and gellan gum (GG) 1.5% w/v were used to reproduce the superior (SUP) cartilage layer and PEGDA 15% w/v and GG 1.5% w/v were used to reproduce the deep (DEEP) cartilage layer, with or without graphene oxide (GO). These materials (SUP and DEEP) were analyzed alone and in combination to mimic the zonal architecture of human articular cartilage. The developed constructs were tested using a four-station displacement control knee joint simulator under bovine calf serum. Roughness and micro-computer tomography (µ-CT) measurements evidenced that the hydrogels with 10% w/v of PEGDA showed a worse behavior both in terms of roughness increase and loss of uniformly distributed density than 15% w/v of PEGDA. The simultaneous presence of GO and 15% w/v PEGDA contributed to keeping the hydrogel construct's characteristics. The Raman spectra of the control samples showed the presence of unreacted C=C bonds in all the hydrogels. The degree of crosslinking increased along the series SUP < DEEP + SUP < DEEP without GO. The Raman spectra of the tested hydrogels showed the loss of diacrylate groups in all the samples, due to the washout of unreacted PEGDA in bovine calf serum aqueous environment. The loss decreased along the series SUP > DEEP + SUP > DEEP, further confirming that the degree of photo-crosslinking of the starting materials plays a key role in determining their wear behavior. μ-CT and Raman spectroscopy proved to be suitable techniques to characterize the structure and composition of hydrogels.
Collapse
Affiliation(s)
- Saverio Affatato
- IRCSS Istituto Ortopedico Rizzoli, Laboratorio di Tecnologia Medica, 40136 Bologna, Italy
| | - Diego Trucco
- IRCSS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy; (D.T.); (G.L.)
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (L.V.); (L.R.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paola Taddei
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy;
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (L.V.); (L.R.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (L.V.); (L.R.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Gilbert Daniel Nessim
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel;
| | - Gina Lisignoli
- IRCSS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy; (D.T.); (G.L.)
| |
Collapse
|
17
|
|
18
|
González-Henríquez CM, Rodriguez-Umanzor FE, Almagro-Correa J, Sarabia-Vallejos MA, Martínez-Campos E, Esteban-Lucía M, Del Campo-García A, Rodríguez-Hernández J. Biocompatible fluorinated wrinkled hydrogel films with antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111031. [PMID: 32993990 DOI: 10.1016/j.msec.2020.111031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Surface-modified hydrogel films were designed to control the bacterial colonization on their surface and to promote cell proliferation through the gradual insertion of highly hydrophobic functional monomers. These hydrogel films were deposited via spin-coating technique, using muscovite mica as a substrate. These samples were then exposed to different external stimuli to produce wrinkled patterns. The relationship between the monomers which compose the hydrogel, was varied to alter the hydrophobic/hydrophilic balance of the final composite. Contact angle and confocal Raman spectroscopy measurements were carried out to characterize the surface and the bulk of the hydrogel film. Cell proliferation and antimicrobial tests were performed using premyoblastic murine cells (C2C12-GFP) and RAW 264.7 (ATCC® TIB-71) macrophagic cell lines, and also for bacteria strains, Staphylococcus aureus and Escherichia coli. The results indicate that the inclusion of the TFPMA produces an increase in cell proliferation, together with a decrease in living bacterial colonies after 48 h, both for Gram-positive or Gram-negative species.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago, Chile; Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago, Chile.
| | - Fernando E Rodriguez-Umanzor
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago, Chile
| | - Jessica Almagro-Correa
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago, Chile
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago, Chile; Instituto de Ingeniería Biológica y Medica, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago, Chile
| | - Enrique Martínez-Campos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Associated Unit to the ICTP-CSIC Polymer Functionalization Group, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Miguel Esteban-Lucía
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Associated Unit to the ICTP-CSIC Polymer Functionalization Group, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | | | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
19
|
Wang A, Liu Z, Xu L, Lou N, Li M, Liu L. Controllable click synthesis of poly(ionic liquid)s by surfactant-free ionic liquid microemulsions for selective dyes reduction. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Cursaru B, Radu AL, Perrin FX, Sarbu A, Teodorescu M, Gavrilă AM, Damian CM, Sandu T, Iordache TV, Zaharia A. Poly(ethylene glycol) Composite Hydrogels with Natural Zeolite as Filler for Controlled Delivery Applications. Macromol Res 2019. [DOI: 10.1007/s13233-020-8029-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Somayajula D, Agarwal A, Sharma AK, Pall AE, Datta S, Ghosh G. In Situ Synthesis of Silver Nanoparticles within Hydrogel-Conjugated Membrane for Enhanced Antibacterial Properties. ACS APPLIED BIO MATERIALS 2019; 2:665-674. [DOI: 10.1021/acsabm.8b00471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Deepika Somayajula
- Department of Mechanical Engineering, University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Ayushi Agarwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ajay K. Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ashley E. Pall
- Department of Natural Sciences, University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Saurav Datta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Gargi Ghosh
- Department of Mechanical Engineering, University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| |
Collapse
|
22
|
Tan M, Horvàth L, Brunetto PS, Fromm KM. Trithiocarbonate-Functionalized PNiPAAm-Based Nanocomposites for Antimicrobial Properties. Polymers (Basel) 2018; 10:E665. [PMID: 30966699 PMCID: PMC6404129 DOI: 10.3390/polym10060665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
In this study, four trithiocarbonate-functionalized PNiPAAms with different molecular weights were synthesized and used as a matrix to form composites with silver nanoparticles. Nanocomposites with several polymer-to-silver ratios P:Ag⁺ were prepared in order to evaluate the influence of silver loading. UV studies showed a thermoresponsive behavior of the nanocomposites with a thermo-reversibility according to cooling-heating cycles. Release kinetics demonstrated that the release of silver ions is mainly influenced by the size of the silver nanoparticles (AgNPs), which themselves depend on the polymer length. Antimicrobial tests against E. coli and S. aureus showed that some of the nanocomposites are antimicrobial and even full killing could be induced.
Collapse
Affiliation(s)
- Milène Tan
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Lenke Horvàth
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Priscilla S Brunetto
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
23
|
Filipecka K, Budaj M, Chamerski K, Miedziński R, Sitarz M, Miskowiak B, Makowska-Janusik M, Filipecki J. PALS, MIR and UV–vis–NIR spectroscopy studies of pHEMA hydrogel, silicon- and fluoro-containing contact lens materials. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Filipecka K, Miedziński R, Sitarz M, Filipecki J, Makowska-Janusik M. Optical and vibrational properties of phosphorylcholine-based contact lenses-Experimental and theoretical investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 176:83-90. [PMID: 28081493 DOI: 10.1016/j.saa.2017.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The Raman, MIR and UV-vis spectroscopy have been used to characterize Omafilcon A material constructing the one of the Proclear family contact lenses. The Omafilcon A is hydrogel material composed of 2-hydroxyethyl methacrylate (HEMA) and 2-methacryloyloxyethyl phosphorylcholine (PC) polymers crosslinked with ethyleneglycol dimethacrylate (EGDMA). Vibrational and electronic properties of the Omafilcon A material were also investigated by quantum chemical calculations. Experimentally obtained Raman, MIR and optical spectra were compared to the theoretical ones calculated applying RHF and DFT methodology. The quantum chemical calculations were performed for isolated monomers of lenses compounds as well as for their dimers and trimers to elucidate the effect of Omafilcon A polymerization and the role of an individual components.
Collapse
Affiliation(s)
- Katarzyna Filipecka
- Institute of Physics, Faculty of Mathematics and Natural Science, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Rafał Miedziński
- Institute of Physics, Faculty of Mathematics and Natural Science, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Maciej Sitarz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Jacek Filipecki
- Institute of Physics, Faculty of Mathematics and Natural Science, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Małgorzata Makowska-Janusik
- Institute of Physics, Faculty of Mathematics and Natural Science, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland.
| |
Collapse
|
25
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E232. [PMID: 28772591 PMCID: PMC5503311 DOI: 10.3390/ma10030232] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 12/02/2022]
Abstract
This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.). Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs) or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Departamento de Química, Matemáticas y del Medio Ambiente, Facultad de Ciencias Naturales, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago 7820436, Chile.
| | - Juan Rodriguez-Hernandez
- Departamento de Química y Propiedades de Polímeros, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
26
|
Preparation, antimicrobial and antioxidant evaluation of indole-3-acetic acid-based pH-responsive bio-nanocomposites. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-016-1900-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Aeinehvand R, Zahedi P, Kashani-Rahimi S, Fallah-Darrehchi M, Shamsi M. Synthesis of poly(2-hydroxyethyl methacrylate)-based molecularly imprinted polymer nanoparticles containing timolol maleate: morphological, thermal, and drug release along with cell biocompatibility studies. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Robabeh Aeinehvand
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11155-4563 Tehran Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11155-4563 Tehran Iran
| | - Shahab Kashani-Rahimi
- School of Polymers and High Performance Materials; The University of Southern Mississippi; 39406-0001 Hattiesburg MS USA
| | - Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11155-4563 Tehran Iran
| | - Mohammad Shamsi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11155-4563 Tehran Iran
| |
Collapse
|
28
|
Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
González-Henríquez C, Pizarro-Guerra G, Córdova-Alarcón E, Sarabia-Vallejos M, Terraza-Inostroza C. Artificial biomembranes stabilized over spin coated hydrogel scaffolds. Crosslinking agent nature induces wrinkled or flat surfaces on the hydrogel. Chem Phys Lipids 2016; 196:13-23. [DOI: 10.1016/j.chemphyslip.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/13/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022]
|
30
|
González-Henríquez CM, Sarabia-Vallejos MA. Electrospinning deposition of hydrogel fibers used as scaffold for biomembranes. Thermal stability of DPPC corroborated by ellipsometry. Chem Phys Lipids 2015. [PMID: 26206414 DOI: 10.1016/j.chemphyslip.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DPPC bilayers were deposited over thin hydrogel scaffolds using the Langmuir-Blodgett technique (with DPPC thickness ∼ 6.2 nm). Wrinkled hydrogels films were used to maintain a moist environment in order to enhance DPPC bilayer stability. Polymer mixtures were prepared using HEMA (as a base monomer) and DEGDMA, PEGDA575, PEGDA700 or AAm (as crosslinking agents); a thermal initiator was added to obtain a final pre-hydrogel (oligomer) with an adequate viscosity for thin film formation. This mixture was deposited as wrinkled film/fibers over hydrophilic silicon wafers using an electrospinning technique. Later, these samples were exposed to UV light to trigger photopolymerization, generating crosslinking bonds between hydrogel chains; this process also generated remnant surface stresses in the films that favored wrinkle formation. In the cases where DEGDMA and AAm were used as crosslinking agents, HEMA was added in higher amounts. The resultant polymer film surface showed homogenous layering with some small isolated clusters. If PEGDA575/700 was used as the crosslinking agent, we observed the formation of polymer wrinkled thin films, composed by main and secondary chains (with different dimensions). Moreover, water absorption and release was found to be mediated through surface morphology, ordering and film thickness. The thermal behavior of biomembranes was examined using ellipsometry techniques under controlled heating cycles, allowing phases and phase transitions to be detected through slight thickness variations with respect to temperature. Atomic force microscopy was used to determinate surface roughness changes according to temperature variation, temperature was varied sufficiently for the detection and recording of DPPC phase limits. Contact angle measurements corroborated and quantified system wettability, supporting the theory that wrinkled hydrogel films act to enhance DPPC bilayer stability during thermal cycles.
Collapse
Affiliation(s)
- C M González-Henríquez
- Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras #3360, Santiago, Chile.
| | - M A Sarabia-Vallejos
- Instituto de Física, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna #4860, Santiago, Chile
| |
Collapse
|