1
|
Akermi S, Smaoui S, Chaari M, Elhadef K, Gentile R, Hait M, Roymahapatra G, Mellouli L. Combined in vitro/in silico approaches, molecular dynamics simulations and safety assessment of the multifunctional properties of thymol and carvacrol: A comparative insight. Chem Biodivers 2024; 21:e202301575. [PMID: 38116885 DOI: 10.1002/cbdv.202301575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Bioactive compounds derived from medicinal plants have acquired immense attentiveness in drug discovery and development. The present study investigated in vitro and predicted in silico the antibacterial, antifungal, and antiviral properties of thymol and carvacrol, and assessed their safety. The performed microbiological assays against Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica Typhimurium revealed that the minimal inhibitory concentration values ranged from (0.078 to 0.312 mg/mL) and the minimal fungicidal concentration against Candida albicans was 0.625 mg/mL. Molecular docking simulations, stipulated that these compounds could inhibit bacterial replication and transcription functions by targeting DNA and RNA polymerases receptors with docking scores varying between (-5.1 to -6.9 kcal/mol). Studied hydroxylated monoterpenes could hinder C. albicans growth by impeding lanosterol 14α-demethylase enzyme and showed a (ΔG=-6.2 and -6.3 kcal/mol). Computational studies revealed that thymol and carvacrol could target the SARS-Cov-2 spike protein of the Omicron variant RBD domain. Molecular dynamics simulations disclosed that these compounds have a stable dynamic behavior over 100 ns as compared to remdesivir. Chemo-computational toxicity prediction using Protox II webserver indicated that thymol and carvacrol could be safely and effectively used as drug candidates to tackle bacterial, fungal, and viral infections as compared to chemical medication.
Collapse
Affiliation(s)
- Sarra Akermi
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules. Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Sfax-, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules. Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Sfax-, Tunisia
| | - Moufida Chaari
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules. Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Sfax-, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules. Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Sfax-, Tunisia
| | - Rocco Gentile
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Milan Hait
- Department of Chemistry, Dr. C. V. Raman University, Kota, 495113, Bilaspur, India
| | | | - Lotfi Mellouli
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules. Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Sfax-, Tunisia
| |
Collapse
|
2
|
Ben Mustapha M, Algethami FK, Elamin MR, Abdulkhair BY, Chaieb I, Ben Jannet H. Chemical Composition, Toxicity and Repellency of Inula graveolens Essential Oils from Roots and Aerial Parts against Stored-Product Beetle Tribolium castaneum (Herbst). Chem Biodivers 2023; 20:e202200978. [PMID: 36808818 DOI: 10.1002/cbdv.202200978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
In this work, essential oils extracted from roots and aerial parts of Inula graveolens by hydrodistillation and their fractions obtained by chromatographic simplification were first investigated for their chemical composition by GC/MS and then evaluated for the first time for their repellency and contact toxicity properties against Tribolium castaneumadults. Twenty-eight compounds were identified in roots essential oil (REO), which accounted for 97.9 % of the total oil composition, with modhephen-8-β-ol (24.7 %), cis-arteannuic alcohol (14.8 %), neryl isovalerate (10.6 %) and thymol isobutyrate (8.5 %) as major constituents. Twenty-two compounds were found in the essential oil from aerial parts (APEO), which accounted for 93.9 % of the total oil, with borneol (28.8 %), caryophylla-4(14),8(15)-dien-6-ol (11.5 %), caryophyllene oxide (10.9 %), τ-cadinol (10.5 %) and bornyl acetate (9.4 %) as main compounds.REO and APEO displayed stronger repellency after 2 h of exposure (80.0 and 90.0 %, respectively) against T. castaneum at the concentration of 0.12 μL/cm2 . After fractionation, fractions R4 and R5 exhibited greater effects (83.3 % and 93.3 %, respectively) than the roots essential oil. Furthermore, the fractions AP2 and AP3 showed higher repellency (93.3 and 96.6 %, respectively) than the aerial parts oil. The LD50 values of oils from roots and aerial parts topically applied were 7.44 % and 4.88 %, respectively. Results from contact toxicity assay showed that fraction R4 was more effective than the roots oil with LD50 value of 6.65 %. These results suggests that essential oils of roots and aerial parts from I. graveolens may be explored as potential natural repellent and contact insecticides against T. castaneum in stored products.
Collapse
Affiliation(s)
- Mayssa Ben Mustapha
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohamed R Elamin
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Babiker Y Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Ikbal Chaieb
- Laboratory of Production and Protection for a Sustainable Horticulture (LR21AGR03) Regional Center of Research on Horticulture and Organic Agriculture, 57, University of Sousse, ChottMariem, TN-4042, Tunisia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| |
Collapse
|
3
|
Mohammadi-Cheraghabadi M, Modarres-Sanavy SAM, Sefidkon F, Mokhtassi-Bidgoli A, Hazrati S. Harvest time explains substantially more variance in yield, essential oil and quality performances of Salvia officinalis than irrigation and putrescine application. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:109-120. [PMID: 36733840 PMCID: PMC9886791 DOI: 10.1007/s12298-022-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Elicitors, irrigation regimes and harvest times influence the content, yield and compound of the essential oil (EO) in Salvia officinalis (sage), through changes in biomass dynamics and biosynthetic pathways. A two-year field experiment was conducted to determine if foliar application of putrescine under optimum and deficit stress conditions would favorably affect EO yield, content and profile of sage harvested in spring and summer. The response of dry weight, EO yield and content, myrcene and borneol concentrations to irrigation regime and putrescine concentration can be expressed by a quadratic model. The maximum dry weight (182.63 g m-2) and EO yield (1.68 g m-2) were predicted under irrigation regimes of 9.06% and 27.75% available soil water depletion (ASWD), respectively. The highest EO content (1.05%) was predicted under 3.04 mM of putrescine. Based on results obtained from GC/MS analyses, 25 compounds (mostly monoterpenes) were identified in the EO of sage. Among EO compounds, α-thujone (54.08%), 1, 8-cineole (17.87%), pinocarvone (14.30%), β-thujone (7.97%) and camphor (8.76%) in turn were the most abundant. The concentration of myrcene was higher in spring than summer under the irrigation regimes of 60% and 80% ASWD. The myrcene concentration reached its maximum (4.53%) under the irrigation regime of 86.5% ASWD. The irrigation regimes of 48.03% and 45.6% ASWD caused the highest borneol concentrations of 1.47% and 1.41% by application of 1.5 mM and 2.25 mM putrescine, respectively. All treatments tested on sage, particularly harvest time, can play an important role in the improvement of EO quality and quantity. Averaged over both years, the irrigation regime of nearly 30% ASWD resulted in the highest EO yield harvested with greater quantity and better quality in summer. The EO content and quality changed slightly with the application of putrescine, without significant effect on yield.
Collapse
Affiliation(s)
| | | | | | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
4
|
In-Depth Study of Thymus vulgaris Essential Oil: Towards Understanding the Antibacterial Target Mechanism and Toxicological and Pharmacological Aspects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3368883. [PMID: 35909468 PMCID: PMC9334058 DOI: 10.1155/2022/3368883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Questions have been raised apropos the emerging problem of microbial resistance, which may pose a great hazard to the human health. Among biosafe compounds are essential oils which captured consumer draw due to their multifunctional properties compared to chemical medication drugs. Here, we examined the chemical profile and the mechanism(s) of action of the Thymus vulgaris essential oil (TVEO) against a Gram-negative bacterium Salmonella enterica Typhimurium ATTCC 10028 (S. enterica Typhimurium ATTCC 10028) and two Gram-positive bacteria Staphyloccocus aureus ATCC 6538 (S. aureus ATCC 6538) and Listeria monocytogenes ATCC 19117 (L. monocytogenes ATCC 19117). Findings showed that TVEO was principally composed of thymol, o-cymene, and γ-terpinene with 47.44, 16.55, and 7.80%, respectively. Molecular docking simulations stipulated that thymol and β-sesquiphellandrene (a minor compound at 1.37%) could target multiple bacterial pathways including topoisomerase II and DNA and RNA polymerases of the three tested bacteria. This result pointed plausible impairments of the pathogenic bacteria cell replication and transcription processes. Through computational approach, the VEGA quantitative structure–activity relationship (QSAR) model, we revealed that among twenty-six TVEO compounds, sixteen had no toxic effects and could be safe for human consumption as compared to the Food and Drug Administration (FDA) approved drugs (ciprofloxacin and rifamycin SV). Assessed by the SwissADME server, the pharmacokinetic profile of all identified TVEO compounds define their absorption, distribution, metabolism, and excretion (ADME) properties and were assessed. In order to predict their biological activity spectrum based on their chemical structure, all TVEO compounds were subjected to PASS (Prediction of Activity Spectra for Substances) online tool. Results indicated that the tested compounds could have multiple biological activities and various enzymatic targets. Findings of our study support that identified compounds of TVEO can be a safe and effective alternative to synthetic drugs and can easily combats hazardous multidrug-resistant bacteria.
Collapse
|
5
|
Gharred N, Ali LMA, Bettache N, Morere A, Menut C, Dridi-Dhaouadi S. Phytochemical profile and biological effects of essential oils from three Inula species grown in Tunisia. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2075479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nawres Gharred
- Laboratory of Environmental Chemistry and Cleaner Process LR21ES04, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Lamiaa M. A. Ali
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Nadir Bettache
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alain Morere
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Chantal Menut
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sonia Dridi-Dhaouadi
- Laboratory of Environmental Chemistry and Cleaner Process LR21ES04, Faculty of Sciences, University of Monastir, Monastir, Tunisia
- Chemistry Department, Preparatory Institute for Engineering Studies, University of Monastir, Monastir, Tunisia
| |
Collapse
|
6
|
Akermi S, Smaoui S, Elhadef K, Fourati M, Louhichi N, Chaari M, Chakchouk Mtibaa A, Baanannou A, Masmoudi S, Mellouli L. Cupressus sempervirens Essential Oil: Exploring the Antibacterial Multitarget Mechanisms, Chemcomputational Toxicity Prediction, and Safety Assessment in Zebrafish Embryos. Molecules 2022; 27:2630. [PMID: 35565980 PMCID: PMC9103706 DOI: 10.3390/molecules27092630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, increasing interest has recently been given to the exploration of new food preservatives to avoid foodborne outbreaks or food spoilage. Likewise, new compounds that substitute the commonly used synthetic food preservatives are required to restrain the rising problem of microbial resistance. Accordingly, the present study was conducted to examine the chemical composition and the mechanism(s) of action of the Cupressus sempervirens essential oil (CSEO) against Salmonella enterica Typhimuriumand Staphyloccocus aureus. The gas chromatography analysis revealed α-pinene (38.47%) and δ-3-carene (25.14%) are the major components of the CSEO. By using computational methods, such as quantitative structure-activity relationship (QSAR), we revealed that many CSEO components had no toxic effects. Moreover, findings indicated that α-pinene, δ-3-carene and borneol, a minor compound of CSEO, could inhibit the AcrB-TolC and MepR efflux pump activity of S. enterica Typhimurium and S. aureus, respectively. In addition, our molecular docking predictions indicated the high affinity of these three compounds with active sites of bacterial DNA and RNA polymerases, pointing to plausible impairments of the pathogenic bacteria cell replication processes. As well, the safety profile was developed through the zebrafish model. The in vivo toxicological evaluation of (CSEO) exhibited a concentration-dependent manner, with a lethal concentration (LC50) equal to 6.6 µg/mL.
Collapse
Affiliation(s)
- Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Nacim Louhichi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Aissette Baanannou
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| |
Collapse
|
7
|
Dittrichia graveolens (L.) Greuter, a Rapidly Spreading Invasive Plant: Chemistry and Bioactivity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030895. [PMID: 35164160 PMCID: PMC8840657 DOI: 10.3390/molecules27030895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Dittrichia graveolens L. Greuter belonging to the Asteraceae family, is an aromatic herbaceous plant native to the Mediterranean region. This plant species has been extensively studied for its biological activities, including antioxidant, antitumor, antimicrobial, antifungal, anti-inflammatory, anticholinesterase, and antityrosinase, and for its peculiar metabolic profile. In particular, bioactivities are related to terpenes and flavonoids metabolites, such as borneol (40), tomentosin (189), inuviscolide (204). However, D. graveolens is also well known for causing health problems both in animals and humans. Moreover, the species is currently undergoing a dramatic northward expansion of its native range related to climate change, now including North Europe, California, and Australia. This review represents an updated overview of the 52 literature papers published in Scopus and PubMed dealing with expansion, chemistry (262 different compounds), pharmacological effects, and toxicology of D. graveolens up to October 2021. The review is intended to boost further studies to determine the molecular pathways involved in the observed activities, bioavailability, and clinical studies to explore new potential applications.
Collapse
|
8
|
Koc K, Aysin F, Ozek NS, Geyikoglu F, Taghizadehghalehjoughi A, Abuc OO, Cakmak O, Deniz GY. Inula graveolens induces selective cytotoxicity in glioblastoma and chronic leukemia cells. Rev Assoc Med Bras (1992) 2021; 67:1771-1778. [PMID: 34909948 DOI: 10.1590/1806-9282.20210614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Crude oil extracts, components of extracts, and ethanolic extracts of Inula graveolens possess various pharmacological activities on various cancer cells including antioxidative and antiproliferative effects. Aqueous extract of this species has not been investigated on the liquid malignancies and solid tumors with a high incidence of treatment refractoriness and poor survival outcomes such as glioblastoma and leukemia. Hence, the present study aimed to evaluate the cytotoxic efficiency of I. graveolens aqueous extracts on human glioblastoma multiforme and chronic myelogenous leukemia cell lines in comparison to non-cancerous primary rat cerebral cortex and human peripheral blood mononuclear cells. METHODS The cells were treated with the extracts of I. graveolens (125-1000 μg/mL) for 48 h, the cellular viability was identified using 3'-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and lactate dehydrogenase release was measured to determine the cytotoxic potential. Total oxidant status and apurinic/apyrimidinic endodeoxyribonuclease 1 assays were used to determine the oxidative status of cells and DNA damage, respectively. RESULTS I. graveolens showed selective cytotoxicity toward human glioblastoma multiforme and chronic myelogenous leukemia cell lines and exhibited a higher antiproliferative effect against cancer cells in comparison to non-cancerous cells. Moreover, it significantly reduced the apurinic/apyrimidinic endodeoxyribonuclease 1 levels on both cancer cell lines as compared with their control cells without changing the levels of an oxidative stress marker. CONCLUSION The extracts of I. graveolens have anti-cancer potential on human glioblastoma multiforme and chronic myelogenous leukemia cell lines without causing oxidative stress.
Collapse
Affiliation(s)
- Kubra Koc
- Ataturk University, Faculty of Science, Department of Biology - Erzurum, Turkey
| | - Ferhunde Aysin
- Ataturk University, Faculty of Science, Department of Biology - Erzurum, Turkey.,Ataturk University, East Anatolian High Technology Research and Application Center - Erzurum, Turkey
| | - Nihal Simsek Ozek
- Ataturk University, Faculty of Science, Department of Biology - Erzurum, Turkey.,Ataturk University, East Anatolian High Technology Research and Application Center - Erzurum, Turkey
| | - Fatime Geyikoglu
- Ataturk University, Faculty of Science, Department of Biology - Erzurum, Turkey
| | - Ali Taghizadehghalehjoughi
- Ataturk University, Faculty of Veterinary Science, Department of Pharmacology and Toxicology - Erzurum, Turkey
| | - Ozlem Ozgul Abuc
- Erzincan University, Faculty of Medicine, Department of Histology and Embryology - Erzincan, Turkey
| | - Ozge Cakmak
- Ataturk University, Faculty of Science, Department of Biology - Erzurum, Turkey
| | | |
Collapse
|
9
|
Seasonal Variation, Fractional Isolation and Nanoencapsulation of Antioxidant Compounds of Indian Blackberry ( Syzygium cumini). Antioxidants (Basel) 2021; 10:antiox10121900. [PMID: 34943003 PMCID: PMC8750729 DOI: 10.3390/antiox10121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Indian blackberry (Syzygium cumini L.) is an evergreen tree in the Myrtaceae family. It is used in traditional medicine due to its significant bioactivities and presence of polyphenols with antioxidant activities. The present study describes the effect of seasonal variations on Indian blackberry leaf essential oil yield and chemical composition, production of fractions from essential oil using high vacuum fractional distillation and slow cooling to low temperature (−50 °C) under vacuum, and bioactivities of the essential oil, fractions, and nanoparticles. The results show that Indian blackberry essential oil yield was higher in spring season as compared to winter season. Indian blackberry essential oil fractionation processes were effective in separating and concentrating compounds with desired bioactivities. The bioactivities shown by magnesium nanoparticles were comparatively higher than barium nanoparticles.
Collapse
|