1
|
Lin G, Yu F, Li D, Chen Y, Zhang M, Lu K, Wang N, Hu S, Zhao Y, Xu H. Polydopamine-cladded montmorillonite micro-sheets as therapeutic platform repair the gut mucosal barrier of murine colitis through inhibiting oxidative stress. Mater Today Bio 2023; 20:100654. [PMID: 37214550 PMCID: PMC10195987 DOI: 10.1016/j.mtbio.2023.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Montmorillonite (MMT), a layered aluminosilicate, has a mucosal nutrient effect and restores the gut barriers integrity. However, orally administrating MMT is not effective to combat the reactive oxygen species (ROS) and alleviate the acute inflammatory relapse for colitis patients. Herein, polydopamine-doped montmorillonite micro-sheets (PDA/MMT) have been developed as a therapeutic platform for colitis treatment. SEM and EDS analysis showed that dopamine monomer (DA) was easily polymerized in alkaline condition and polydopamine (PDA) was uniformly cladded on the surface of MMT micro-sheets. The depositing amount of PDA was reaching to 2.06 ± 0.08%. Moreover, in vitro fluorescence probes experiments showed that PDA/MMT presented the broad spectra of scavenging various ROS sources including •OH, •O2-, and H2O2. Meanwhile, the intracellular ROS of Rosup/H2O2 treated Caco-2 cell was also effectively scavenged by PDA/MMT, which resulted in the obvious improvement of the cell viability under oxidative stress. Moreover, most of orally administrated PDA/MMT was transited to the gut and form a protective film on the diseased colon. PDA/MMT exhibited the obvious therapeutic effect on DSS-induced ulcerative colitis mouse. Importantly, the gut mucosa of colitis mouse was well restored after PDA/MMT treatment. Moreover, the colonic inflammation was significantly alleviated and the goblet cells were obliviously recovered. The therapeutic mechanism of PDA/MMT was highly associated with inhibiting oxidative stress. Collectively, PDA/MMT micro-sheets as a therapeutic platform may provide a promising therapeutic strategy for UC treatment.
Collapse
Affiliation(s)
- Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Fengnan Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Yi Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Kaili Lu
- CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Neili Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| |
Collapse
|
2
|
Kulkarni R, Fanse S, Burgess DJ. Mucoadhesive drug delivery systems: a promising non-invasive approach to bioavailability enhancement. Part I: biophysical considerations. Expert Opin Drug Deliv 2023; 20:395-412. [PMID: 36803111 DOI: 10.1080/17425247.2023.2181331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, different sites have been explored for mucoadhesion including the nasal, oral, and vaginal cavities, the gastrointestinal tract and ocular tissues. AREAS COVERED The present review aims to provide a comprehensive understanding of different aspects of MDDS development. Part I focuses on the anatomical and biological aspects of mucoadhesion, which include a detailed elucidation of the structure and anatomy of the mucosa, the properties of mucin, the different theories of mucoadhesion and evaluation techniques. EXPERT OPINION The mucosal layer presents a unique opportunity for effective localization as well as systemic drug delivery via MDDS. Formulation of MDDS requires a thorough understanding of the anatomy of mucus tissue, the rate of mucus secretion and turnover, and the physicochemical properties of mucus. Further, the moisture content and the hydration of polymers are crucial for interaction with mucus. A confluence of different theories used to explain the mechanism of mucoadhesion is useful for understanding the mucoadhesion of different MDDS and their evaluation is subject to factors, such as the site of administration, type of dosage form, and duration of action. [Figure: see text].
Collapse
Affiliation(s)
- Radha Kulkarni
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Suraj Fanse
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
Malatani RT, Bilal S, Mahmood A, Sarfraz RM, Zafar N, Ijaz H, Rehman U, Akbar S, Alkhalidi HM, Gad HA. Development of Tofacitinib Loaded pH-Responsive Chitosan/Mucin Based Hydrogel Microparticles: In-Vitro Characterization and Toxicological Screening. Gels 2023; 9:gels9030187. [PMID: 36975636 PMCID: PMC10048094 DOI: 10.3390/gels9030187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Tofacitinib is an antirheumatic drug characterized by a short half-life and poor permeability, which necessitates the development of sustained release formulation with enhanced permeability potential. To achieve this goal, the free radical polymerization technique was employed to develop mucin/chitosan copolymer methacrylic acid (MU-CHI-Co-Poly (MAA))-based hydrogel microparticles. The developed hydrogel microparticles were characterized for EDX, FTIR, DSC, TGA, X-ray diffraction, SEM, drug loading; equilibrium swelling (%), in vitro drug release, sol–gel (%) studies, size and zeta potential, permeation, anti-arthritic activities, and acute oral toxicity studies. FTIR studies revealed the incorporation of the ingredients into the polymeric network, while EDX studies depicted the successful loading of tofacitinib into the network. The thermal analysis confirmed the heat stability of the system. SEM analysis displayed the porous structure of the hydrogels. Gel fraction showed an increasing tendency (74–98%) upon increasing the concentrations of the formulation ingredients. Formulations coated with Eudragit (2% w/w) and sodium lauryl sulfate (1% w/v) showed increased permeability. The formulations equilibrium swelling (%) increased (78–93%) at pH 7.4. Maximum drug loading and release (%) of (55.62–80.52%) and (78.02–90.56%), respectively, were noticed at pH 7.4, where the developed microparticles followed zero-order kinetics with case II transport. Anti-inflammatory studies revealed a significant dose-dependent decrease in paw edema in the rats. Oral toxicity studies confirmed the biocompatibility and non-toxicity of the formulated network. Thus, the developed pH-responsive hydrogel microparticles seem to have the potential to enhance permeability and control the delivery of tofacitinib for the management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Rania T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sana Bilal
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan
- Correspondence: (A.M.); (H.A.G.)
| | | | - Nadiah Zafar
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar, PuncakAlam 42300, Malaysia
| | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur 22620, Pakistan
| | - Umaira Rehman
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Shehla Akbar
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hala M. Alkhalidi
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Correspondence: (A.M.); (H.A.G.)
| |
Collapse
|
4
|
Yuan H, Zhang C, Zhou P, Yang X, Tao R, Ye J, Wang C. Preparation of polyprenol/poly (β-amino ester)/galactose targeted micelle carrier for enhancing cancer therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
5
|
Yingying M, Xiu-Xia L, Luyun C, Jianrong L. pH-Sensitive ε-polylysine/polyaspartic acid/zein nanofiber membranes for the targeted release of polyphenols. Food Funct 2022; 13:6792-6801. [PMID: 35670545 DOI: 10.1039/d1fo03051e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this work, zein nanofiber membranes loaded with ε-polylysine-polyphenol-polyaspartic acid were prepared using electrospinning for the controlled delivery of polyphenols. The loading efficiency (LE) and loading capacity (LC) of polyphenols in ε-polylysine/polyaspartic acid hydrogels were determined. Characterization of the films was carried out using water contact angle (WCA) measurement, thermal analysis (DSC/TG), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study showed that the embedding rates of all samples reached more than 80%. The structural characterization results showed that the nanofiber membranes loaded with hydrophobic polyphenols were more stable and no new compounds formed during electrostatic spinning. The in vitro release study of phlorotannin, kaempferol and tannic acid indicated that about 62.35%, 63.51% and 73.65% of polyphenol release occurred at pH 6.8 for 8 h. The result of cytotoxicity assay in human colon cancer cells (HT-29) showed good biocompatibility of the zein nanofiber membranes. The investigation suggested that polyphenols can be successfully entrapped in the ε-polylysine-polyaspartic acid-zein nanofiber membranes for targeted delivery.
Collapse
Affiliation(s)
- Ma Yingying
- College of Food Science and Technology, Bohai University, Songshan, Jinzhou, Liaoning, 121013, China.,National & Local Joint Engineering Research Center of Storage, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China.
| | - Li Xiu-Xia
- College of Food Science and Technology, Bohai University, Songshan, Jinzhou, Liaoning, 121013, China.,National & Local Joint Engineering Research Center of Storage, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China.
| | - Cai Luyun
- College of Food Science and Technology, Bohai University, Songshan, Jinzhou, Liaoning, 121013, China.,National & Local Joint Engineering Research Center of Storage, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China.
| | - Li Jianrong
- College of Food Science and Technology, Bohai University, Songshan, Jinzhou, Liaoning, 121013, China.,National & Local Joint Engineering Research Center of Storage, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
6
|
Rauf A, Tabish TA, Ibrahim IM, Rauf ul Hassan M, Tahseen S, Abdullah Sandhu M, Shahnaz G, Rahdar A, Cucchiarini M, Pandey S. Design of Mannose-Coated Rifampicin nanoparticles modulating the immune response and Rifampicin induced hepatotoxicity with improved oral drug delivery. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Zhang G, Bao C, Yi H. Investigation of the temperature responsive behaviors of novel polyaspartamide derivatives bearing alkyl ether-type pendants. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
8
|
Sadr MS, Heydarinasab A, Panahi HA, Javan RS. Production and characterization of biocompatible nano‐carrier based on
Fe
3
O
4
for magnetically hydroxychloroquine drug delivery. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahshad Sadat Sadr
- Department of Petroleum and Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Amir Heydarinasab
- Department of Petroleum and Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Raheleh Safaie Javan
- Department of Biology, Varamin‐Pishva Branch Islamic Azad University Varamin Iran
| |
Collapse
|