1
|
Tariq HZ, Saeed A, Ullah S, Fatima N, Halim SA, Khan A, El-Seedi HR, Ashraf MZ, Latif M, Al-Harrasi A. Synthesis of novel coumarin-hydrazone hybrids as α-glucosidase inhibitors and their molecular docking studies. RSC Adv 2023; 13:26229-26238. [PMID: 37670997 PMCID: PMC10475976 DOI: 10.1039/d3ra03953f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder and more than 90% of diabetic patients suffer from type-2 diabetes, which is characterized by hyperglycemia. α-Glucosidase inhibition has become an appropriate approach to tackle high blood glucose levels. The current study was focused on synthesizing coumarin-hydrazone hybrids (7a-i) by using facile chemical reactions. The synthesized compounds were characterized by using 1H-NMR, 13C-NMR, and IR. To evaluate their anti-diabetic capability, all of the conjugates were screened for in vitro α-glucosidase inhibitory activity to reveal their therapeutic importance. All of the compounds (except 7b) demonstrated significant enzyme inhibitory potential with IC50 values ranging between 2.39-57.52 μM, as compared to the standard inhibitor, acarbose (IC50 = 873.34 ± 1.67 μM). Among them, compound 7c is the most potent α-glucosidase inhibitor (IC50 = 2.39 ± 0.05 μM). Additionally, molecular docking was employed to scrutinize the binding pattern of active compounds within the α-glucosidase binding site. The in silico analysis reflects that hydrazone moiety is an essential pharmacophore for the binding of compounds with the active site residues of the enzyme. This study demonstrates that compounds 7c and 7f deserve further molecular optimization for potential application in diabetic management.
Collapse
Affiliation(s)
- Hafiza Zara Tariq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Noor Fatima
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Hesham R El-Seedi
- School of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
| | | | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| |
Collapse
|
2
|
Gunavathi S, Venkateswaramoorthi R, Arulvani K, Bharanidharan S. Synthesis, Spectral Characterization, Density Functional Theory Investigation and Molecular Docking Studies of Formohydrazide‐Based Hydrazones as Potential Antimicrobial Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- S. Gunavathi
- Department of Chemistry PGP College of Arts and Science Namakkal 637207 Tamil Nadu India
| | - R. Venkateswaramoorthi
- Department of Chemistry PGP College of Arts and Science Namakkal 637207 Tamil Nadu India
| | - K. Arulvani
- Department of Chemistry PGP College of Arts and Science Namakkal 637207 Tamil Nadu India
| | - S. Bharanidharan
- Department of Physics Panimalar Engineering College Chennai 600123 Tamil Nadu India
| |
Collapse
|
3
|
Recent advances on biologically active coumarin-based hybrid compounds. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Alshaye NA, Ibrahim MA. Synthesis, characterization and biological evaluation of the novel chromenopyridothiazolopyrimidines and chromenopyridopyrimidothiazolo-pyrimidines. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2172684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Najla A. Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | |
Collapse
|
5
|
Yildirim M, Unal ZN, Ersatir M, Yetkin D, Degirmenci U, Giray ES. Anti-Inflammatory Effects of Coumarin–Selenophene Derivatives on LPS-Stimulated RAW 264.7 Macrophage Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Lai JR, Yin FD, Guo QS, Yuan F, Nian BF, Zhang M, Wu ZB, Zhang HB, Tang E. Silver-catalysed three-component reactions of alkynyl aryl ketones, element selenium, and boronic acids leading to 3-organoselenylchromones. Org Biomol Chem 2022; 20:5104-5114. [PMID: 35703142 DOI: 10.1039/d2ob00696k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ag-catalysed three-component reaction of alkynyl aryl ketones bearing an ortho-methoxy group, element selenium, and arylboronic acid, providing a facile route to selenofunctionalized chromone products has been developed. This protocol features high efficiency and high regioselectivity, and the use of selenium powder as the selenium source. Mechanistic experiments indicated that the combined oxidative effect of (bis(trifluoroacetoxy)iodo)benzene and oxygen in the air pushes the catalytic redox cycle of the Ag catalyst and the phenylselenium trifluoroacetate formed in situ is the key intermediate of the PIFA-mediated 6-endo-electrophilic cyclization and selenofunctionalization reaction of alkynyl aryl ketones.
Collapse
Affiliation(s)
- Jin-Rong Lai
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fu-Dan Yin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Qing-Song Guo
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fei Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Bei-Fang Nian
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Ming Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhi-Bang Wu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - E Tang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
7
|
Ansari A, Tauro S, Asirvatham S. A Systematic Review on Synthetic and Antimicrobial Bioactivity of the Multifaceted Hydrazide Derivatives. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666210920141351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
To overcome the upsurge of antimicrobial resistance that has emerged in recent years,
there is a need for the development of newer hits having satisfying anti-infective activity. Hydrazides
incorporated with an azomethine hydrogen account for a cardinal class of molecules for the
development of newer derivatives. Hydrazide derivatives have gained considerable interest of medicinal
chemists owing to their diverse bioactivity. In the present review, we have attempted to
compile the recent trends in the synthesis of hydrazides and their substituted derivatives. The structural
features that lead to the desired antimicrobial activity are highlighted, which will lead the way
for synthetic and medicinal chemists to focus on newer designs in this arena.
Collapse
Affiliation(s)
- Afrin Ansari
- Department of Pharmaceutical Chemistry and Quality Assurance, St. John Institute of Pharmacy and Research,
Palghar, Maharashtra, India
| | - Savita Tauro
- Department of Pharmaceutical Chemistry and Quality Assurance, St. John Institute of Pharmacy and Research,
Palghar, Maharashtra, India
| | - Sahaya Asirvatham
- Department of Pharmaceutical Chemistry and Quality Assurance, St. John Institute of Pharmacy and Research,
Palghar, Maharashtra, India
| |
Collapse
|
8
|
Keri RS, Budagumpi S, Balappa Somappa S. Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure-activity relationship. J Clin Pharm Ther 2022; 47:915-931. [PMID: 35288962 DOI: 10.1111/jcpt.13644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The main objective of this review is to highlight the most relevant studies since 1990 (to date) in the area of medicinal chemistry aspects to provide a panoramic view to the biologists/medicinal chemists working in this area and would assist them in their efforts to design, synthesize and extract (from natural source) coumarin-based anticonvulsant agents. Also, the structure-activity relationship (SAR) studies are also discussed for further rational design of this kind of derivatives. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic coumarin-based antiepileptic agents. METHODS A literature review emphasizing the application of coumarin core as antiepileptic agents identify articles related to the topic; we performed a standardized search from 1990 to November 2021, using search engines like Scifinder, web of Science, Pubmed and Scopus. RESULTS AND DISCUSSION This review gives an overview of attempts to shed light and compile published reports on coumarin derivatives along with some opinions on different approaches to help the medicinal chemists in designing future generation potent yet safer anticonvulsant agents. The possible structure-activity relationships (SARs) will also be discussed to indicate the direction for the rational design of more effective candidates. WHAT IS NEW AND CONCLUSION The findings from this review provide new indications or directions for the discovery of new and better drugs from synthetic and naturally occurring coumarins as antiepileptic agents. In our review, we have tried to depict the recent researches which made in the design and development of novel anticonvulsant compounds with coumarin nucleus. Also, SAR of expressed derivatives indicated that the choice of a fitting substitution containing electron-withdrawing/donating groups to coumarin or with some heterocyclic moieties joined to parent coumarin skeleton assumes an essential role in changing the anticonvulsant activity of synthesized derivatives. These findings encourage the scientific community towards the optimization of the pharmacological profile of this structural moiety as an important scaffold for the treatment of epilepsy.
Collapse
Affiliation(s)
- Rangappa S Keri
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | | | - Sasidhar Balappa Somappa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Organic Chemistry Section, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| |
Collapse
|
9
|
The antithrombotic activity of natural and synthetic coumarins. Fitoterapia 2021; 154:104947. [PMID: 34352355 DOI: 10.1016/j.fitote.2021.104947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022]
Abstract
Thrombosis, which seriously endangers human health and life, is the leading cause of morbidity and mortality globally. Antithrombotic drugs can interfere with the occurrence and development of thrombotic diseases and play an important role in the treatment of thrombotic diseases. However, unsatisfactory efficacy and serious adverse effects of existing antithrombotic drugs increase the research for new, efficient and safer drugs. Natural and synthetic coumarins have been shown to possess antithrombotic activity, namely, anticoagulation and antiplatelet aggregation. Especially, coumarin-based warfarin, phenprocoumon and cloricromen have long been used in clinical treatment of thrombosis. Coumarin with low toxicity is the privileged structure for developing novel antithrombotic drugs with multiple mechanisms of action. The present review aims to compile current research on the development of coumarins against thrombosis, emphasizing the relationship between their chemical structures and therapeutic effectiveness. It is intended to provide promising ideas for the discovery of novel coumarin derivatives with high antithrombotic activity.
Collapse
|
10
|
Bahadur A, Iqbal S, Ujan R, Channar PA, Al-Anazy MM, Saeed A, Mahmood Q, Shoaib M, Shah M, Arshad I, Shabir G, Saifullah M, Liu G, Qayyum MA. Effect of organic solvents on solvatochromic, fluorescence, and electrochemical properties of synthesized thiazolylcoumarin derivatives. LUMINESCENCE 2021; 36:1189-1197. [PMID: 33759314 DOI: 10.1002/bio.4044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
In this present investigation, thiazolylcoumarin derivatives (5a-5k) were synthesized from thiosemicarbazide, ethyl acetoacetate, and naphthaldehyde through a multistep route. The formation of thiazolylcoumarin derivatives with bioactive scaffolds was confirmed through nuclear magnetic resonance spectroscopy. A solvatochromic study of synthesized thiazolylcoumarin derivatives was carried out using ultraviolet-visible methods for dimethylformamide (DMF), ethyl acetate, and ethanol solvents. The redox behaviour of as-synthesized thiazolylcoumarin derivatives (5a-5k) was examined in dimethyl sulphoxide by conducting an electrochemical study. Fluorescence properties of thiazolylcoumarin derivatives were studied in DMF, ethanol, and ethyl acetate to visualize the solvent effect on the emitting ability of thiazolylcoumarin derivatives.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Shahid Iqbal
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | | | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qaiser Mahmood
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shoaib
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mazloom Shah
- Department of chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ifzan Arshad
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Guocong Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Muhammad Abdul Qayyum
- Department of Chemistry Division of Science and Technology University of Education Lahore, Pakistan
| |
Collapse
|