1
|
Lee JI, Choi D, Kim S, Park SJ, Kwon EE. Fabrication of Fe-doped biochar for Pb adsorption through pyrolysis of agricultural waste with red mud. CHEMOSPHERE 2025; 370:143930. [PMID: 39667532 DOI: 10.1016/j.chemosphere.2024.143930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Synthesis of metal-doped biochar have gained prominence due to their adsorption capability for heavy metal(loid)s. In this study, iron-doped biochar (Fe-BC) was fabricated through pyrolysis of waste mushroom substrate (WMS) with red mud (RM). The synthesised Fe-BC was employed as an adsorbent for Pb removal. During pyrolysis of WMS, introducing RM contributed to the enhanced syngas formation, this observation was attributed to the catalytic function of Fe species in RM. The Fe-BCs were made at three different temperatures (500, 600, and 700 °C), and their adsorption capabilities for Pb were evaluated. Among the prepared Fe-BCs, Fe-BC fabricated at 700 °C (Fe-BC-700) demonstrated the highest Pb adsorption performance (243.07 mg g-1). This performance primarily stemmed from the presence of zero-valent Fe and surface functional groups (-OH) in Fe-BC-700. Pb removal by Fe-BC-700 was dominated by surface precipitation and complexation mechanisms. Therefore, this study highlights a promising approach for producing an effective adsorbent for Pb removal from industrial wastewater by utilizing wastes such as RM and WMS.
Collapse
Affiliation(s)
- Jae-In Lee
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Dongho Choi
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seungwon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seong-Jik Park
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea; Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Su W, Mohan BC, Prabhakar AK, Yao Z, Wang Y, Wang CH. Valorization of carbon soot ash for the selective capture of lead ions from industrial waste water-A waste to resource approach. CHEMOSPHERE 2024; 366:143443. [PMID: 39368498 DOI: 10.1016/j.chemosphere.2024.143443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Landfills are struggling to accommodate the increasing amounts of carbon soot ash waste from oil refineries. Due to extensive industrial productions, large quantities of lead ions are released into the environment, which not only pollutes the environment but also affects flora and fauna. In this work, these urgent environmental issues will be tackled by studying the use of modified carbon soot ash for specific heavy metal adsorption. Carbon soot ash modified with chemical leaching and physical ball-milling was loaded onto the surface of graphene oxide. This adsorbent was found to selectively adsorb and remove toxic lead ions (>99%) from a mixed heavy metal solution. The adsorption efficiency was found to increase with temperature (20-60 °C) and pH (2-8). Langmuir isotherm and pseudo-second order kinetics were found to fit the adsorption process through curve fitting, where the adsorbent reached a maximum capacity of 194.55 mg/g. Potential mechanisms for lead adsorption and metal specificity are also discussed here. This work aligns with the waste-to-resource pathway, where waste carbon soot ash is diverted from landfilling and is formulated as a specific heavy metal adsorbent, that shows promise for environmental remediation.
Collapse
Affiliation(s)
- Weiling Su
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585
| | - Babu Cadiam Mohan
- Cbe Eco-Solutions Pte. Ltd. 3 Research Link, #01-02 INNOVATION 4.0, Singapore, 117602
| | - Arun Kumar Prabhakar
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602; NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602
| | - Zhiyi Yao
- Cbe Eco-Solutions Pte. Ltd. 3 Research Link, #01-02 INNOVATION 4.0, Singapore, 117602
| | - Yiying Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602.
| |
Collapse
|
3
|
Lee JI, Jeong Y, Lee YJ, Lee CG, Park SJ. Harnessing wood bottom ash for efficient arsenic removal from wastewater: Adsorption mechanisms and process optimisation. CHEMOSPHERE 2024; 364:143204. [PMID: 39209039 DOI: 10.1016/j.chemosphere.2024.143204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study explored the innovative application of wood bottom ash (WBA) as an adsorbent for arsenic (As) removal from wastewater, focusing on the adsorption mechanism and optimisation of the operational conditions. Comprehensive spectroscopic analyses, including FE-SEM/EDS, BET, XRF, XRD, FT-IR, and XPS, were performed to examine the elemental and mineralogical changes in WBA before and after As adsorption. The study assessed the adsorption kinetics and isotherms, revealing that As adsorption reached equilibrium within 48 h, with a maximum capacity of 121.13 mg/g. The adsorption process followed a pseudo-second-order kinetic model and aligned well with the Langmuir isotherm, indicating that the process is governed by chemisorption and occurs as monolayer adsorption. The primary removal mechanism was the surface precipitation of amorphous calcium arsenate. Response surface methodology was employed to analyse and optimise the factors influencing As removal, including solution pH, ionic strength, adsorbent dose and reaction time. The optimal conditions for maximum As removal were pH 7.11, 8.37 mM ionic strength, 9.08 g/L WBA dose, and 2.58 h reaction time. This study offers novel insights into the efficient and cost-effective use of WBA for As removal, highlighting its potential as a sustainable solution for wastewater treatment in developing countries.
Collapse
Affiliation(s)
- Jae-In Lee
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Yohan Jeong
- Dept. of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Youn-Jun Lee
- Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Chang-Gu Lee
- Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea; Dept. of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| | - Seong-Jik Park
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea; Dept. of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
4
|
Farasati Far B, Naimi-Jamal MR, Jahanbakhshi M, Keihankhadiv S, Baradarbarjastehbaf F. Enhanced methylene blue adsorption using single-walled carbon nanotubes/chitosan-graft-gelatin nanocomposite hydrogels. Sci Rep 2024; 14:19217. [PMID: 39160184 PMCID: PMC11333742 DOI: 10.1038/s41598-024-69969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
In the present study, single-walled carbon nanotubes (SWCNTs) incorporating chitosan-graft-gelatin (CS-g-GEL/SWCNTs) hydrogels were fabricated with multiple advantages, including cost-effectiveness, high efficiency, biodegradability, and ease of separation for methylene blue (MB) dye from aqueous solution. To verify the successful formulation of the prepared hydrogels, various characterization methods such as NMR, FTIR, XRD, FE-SEM, TGA, BET, and EDX were employed. The removal efficiency of CS-g-GEL/SWCNTs nanocomposite hydrogel increased significantly to 98.87% when the SWCNTs percentage was increased to 20%. The highest adsorption was observed for pH = 9, an adsorbent dose = 1.5 g L-1, a temperature = 25 °C, a contact time = 60 min, and a contaminant concentration = 20 mg L-1. Based on the thermodynamic results, spontaneous adsorption occurred from a negative Gibbs free energy (ΔG°). In addition, the thermodynamic analysis of the adsorption process revealed an average enthalpy of - 21.869 kJ mol-1 for the adsorption process at a temperature range of 25-45 °C, which indicates its spontaneous and exothermic behavior. The Langmuir isotherm model was successfully used to describe the equilibrium behavior of adsorption. The pseudo-first-order model better described adsorption kinetics compared to the pseudo-second-order, intra-particle, and Elovich models. CS-g-GEL/SWCNTs hydrogels have improved reusability for five consecutive cycles, suggesting that they may be effective for removing anionic dyes from aquatic environments.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran.
| | - Mehdi Jahanbakhshi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Shadi Keihankhadiv
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44_100, Gliwice, Poland
| | - Farid Baradarbarjastehbaf
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Felipe Melo Lima Gomes B, Araujo CMBD, do Nascimento BF, Silva Santos RKD, Freire EMPDL, Da Motta Sobrinho MA, Carvalho MN. Adsorption of Cd (II) ions and methyl violet dye by using an agar-graphene oxide nano-biocomposite. ENVIRONMENTAL TECHNOLOGY 2024; 45:2957-2968. [PMID: 37002614 DOI: 10.1080/09593330.2023.2198732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In this work, an agar-graphene oxide hydrogel was prepared to adsorb Cd (II) and Methyl Violet (MV) from water. The hydrogel was synthesised and characterised through SEM and EDS. Kinetic, equilibrium and regeneration studies were carried out, in which Langmuir, Freundlich and Sips isotherm models were fitted to the equilibrium experimental data; and regarding the kinetics, studies were conducted by modelling experimental data considering both empirical and phenomenological models. SEM and EDS have shown the composite present a 3D-disordered porous microstructure and that it is mainly constituted of C and O. Sips model fitted well to Cd (II) (R2 = 0.968 and χ2 = 0.176) and MV (R2 = 0.993 and χ2 = 0.783). The qmax values for MV and Cd (II) were 76.65 and 11.70 mg.g-1, respectively. Pseudo-order models satisfactorily described Cd (II) and MV adsorption kinetics with R2 > 0.90. Regeneration experiments revealed an outstanding reuse capacity of the adsorbent after three cycles of adsorption-desorption for both Cd (II) and MV. This study evidences the possibility of a feasible adsorbent for Cd (II) and MV removal from water for successive cycles of use.
Collapse
Affiliation(s)
- Brener Felipe Melo Lima Gomes
- Group of Physical Organic Chemistry (GPOC), Department of Chemistry, Institute of Biological and Exact Sciences, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
- Department of Rural Technology, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | | | | | | | | | | | - Marilda Nascimento Carvalho
- Department of Rural Technology, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Recife-PE, Brazil
| |
Collapse
|
6
|
Alvandi S, Hosseinifard M, Bababmoradi M. Enhancement of Pb(ii) adsorptive removal by incorporation of UiO-66-COOH into the magnetic graphitic carbon nitride nanosheets. RSC Adv 2024; 14:8990-9002. [PMID: 38500627 PMCID: PMC10945373 DOI: 10.1039/d4ra00364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Efficient elimination of Lead (Pb(ii)) from aqueous solutions has become a crucial area of focus in the wastewater treatment industry. In this study, novel mesoporous magnetic g-C3N4/Fe3O4/UiO-66-COOH was synthesized by combining the acid-functionalized metal-organic framework (MOF) of UiO-66-COOH via a facile novel solvothermal method with magnetic graphitic carbon nitride (g-C3N4/Fe3O4) sheets to enhance Pb(ii) adsorption in water. The study investigated various influential adsorption parameters, including pH, dosage, contact time, ion concentration, and temperature. The Langmuir model, which depicts monolayer adsorption on a uniform surface, was a more suitable fit for the adsorption isotherms. The kinetics conformed to the pseudo-second-order model, indicating a chemical adsorption mechanism. According to the Langmuir model, the adsorption capacity of g-C3N4/Fe3O4/UiO-66-COOH is expected to reach a maximum of 285.8 mg L-1. This value is 2.6 times higher than g-C3N4/Fe3O4 and 1.6 times higher than UiO-66-COOH. The enhanced adsorption capacity of g-C3N4/Fe3O4/UiO-66-COOH is attributed to its superior characteristics, such as abundant functional groups and high surface area which is 2.16 times higher than g-C3N4/Fe3O4. The adsorption thermodynamics indicated that the adsorption occurred spontaneously and was characterized as exothermic. g-C3N4/Fe3O4/UiO-66-COOH material exhibited good recyclability for up to five runs.
Collapse
Affiliation(s)
- Sayeh Alvandi
- Department of Physics, Iran University of Science and Technology Tehran 16846-13114 Iran
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center Karaj Iran
| | | | - Mohsen Bababmoradi
- Department of Physics, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
7
|
Karami N, Mohammadpour A, Samaei MR, Amani AM, Dehghani M, Varma RS, Sahu JN. Green synthesis of sustainable magnetic nanoparticles Fe 3O 4 and Fe 3O 4-chitosan derived from Prosopis farcta biomass extract and their performance in the sorption of lead(II). Int J Biol Macromol 2024; 254:127663. [PMID: 37884234 DOI: 10.1016/j.ijbiomac.2023.127663] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The sustainable processes are now in tremendous demand for nanomaterial synthesis as a result of their unique properties and characteristics. The magnetic nanoparticles comprised of Fe3O4 and its conjugate with abundant and renewable biopolymer, chitosan, were synthesized using Prosopis farcta biomass extract, and the resulting materials were used to adsorb Pb (II) from aqueous solution. Thermodynamic parameters revealed that the sorption of lead (II) on Fe3O4 as well as Fe3O4-Chitosan (Fe3O4-CS) has been an endothermic and self-regulating procedure wherein the sorption kinetics was defined by a pseudo-second-order pattern and the sorption isotherms corresponded to the Freundlich pattern. A multivariable quadratic technique for adsorption process optimization was implemented to optimize the lead (II) adsorption on Fe3O4 and Fe3O4-chitosan nanoparticles, the optimal conditions being pH 7.9, contact time of 31.2 min, initial lead concentration of 39.2 mg/L, adsorbent amount of 444.3 mg, at a 49.7 °C temperature. The maximum adsorption efficiencies under optimal conditions were found to be 69.02 and 89.54 % for Fe3O4 and Fe3O4-CS adsorbents, respectively. Notably, Fe3O4 and Fe3O4-CS can be easily recovered using an external magnet, indicating that they are a viable and cost-effective lead removal option.
Collapse
Affiliation(s)
- Najmeh Karami
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Mohammadpour
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansooreh Dehghani
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil
| | - J N Sahu
- University of Stuttgart, Institute of Chemical Technology, Faculty of Chemistry, D-70550 Stuttgart, Germany; South Ural State University (National Research University), Chelyabinsk, Russian Federation.
| |
Collapse
|
8
|
Esmaeili Nasrabadi A, Zahmatkesh Anbarani M, Bonyadi Z. Investigating the efficiency of oak powder as a new natural coagulant for eliminating polystyrene microplastics from aqueous solutions. Sci Rep 2023; 13:20402. [PMID: 37990113 PMCID: PMC10663507 DOI: 10.1038/s41598-023-47849-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023] Open
Abstract
Polystyrene (PS) is a commonly used plastic material in disposable containers. However, it readily breaks down into microplastic particles when exposed to water environments. In this research, oak powder was used as a natural, inexpensive, and eco-friendly coagulant. The present study aims to determine the effectiveness of oak powder in removing PS from aquatic environments. The Box-Behnken model (BBD) was used to determine the optimal conditions for removal. The removal efficiency was evaluated for various parameters including PS concentration (100-900 mg/L), pH (4-10), contact time (10-40 min), and oak dosage (100-400 mg/L). The maximum removal of PS microplastics (89.1%) was achieved by using an oak dose of 250 mg/L, a PS concentration of 900 mg/L, a contact time of 40 min, and a pH of 7. These results suggest that oak powder can effectively remove PS microplastics through surface adsorption and charge neutralization mechanisms, likely due to the presence of tannin compounds. Based on the results obtained, it has been found that the natural coagulant derived from oak has the potential to effectively compete with harmful chemical coagulants in removing microplastics from aqueous solutions.
Collapse
Affiliation(s)
- Afsaneh Esmaeili Nasrabadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Zahmatkesh Anbarani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Jamoussi B, Chakroun R, Al-Mur BA, Halawani RF, Aloufi FA, Chaabani A, Aljohani NS. Design of a New Phthalocyanine-Based Ion-Imprinted Polymer for Selective Lithium Recovery from Desalination Plant Reverse Osmosis Waste. Polymers (Basel) 2023; 15:3847. [PMID: 37765702 PMCID: PMC10537805 DOI: 10.3390/polym15183847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, a novel technique is introduced that involves the combination of an ion-imprinted polymer and solid-phase extraction to selectively adsorb lithium ions from reverse osmosis brine. In the process of synthesizing ion-imprinted polymers, phthalocyanine acrylate acted as the functional monomer responsible for lithium chelation. The structural and morphological characteristics of the molecularly imprinted polymers and non-imprinted polymers were assessed using Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorption data for Li on an ion-imprinted polymer showed an excellent fit to the Langmuir isotherm, with a maximum adsorption capacity (Qm) of 3.2 mg·g-1. Comprehensive chemical analyses revealed a significant Li concentration with a higher value of 45.36 mg/L. Through the implementation of a central composite design approach, the adsorption and desorption procedures were systematically optimized by varying the pH, temperature, sorbent mass, and elution volume. This systematic approach allowed the identification of the most efficient operating conditions for extracting lithium from seawater reverse osmosis brine using ion-imprinted polymer-solid-phase extraction. The optimum operating conditions for the highest efficiency of adsorbing Li+ were determined to be a pH of 8.49 and a temperature of 45.5 °C. The efficiency of ion-imprinted polymer regeneration was evaluated through a cycle of the adsorption-desorption process, which resulted in Li recoveries of up to 80%. The recovery of Li from the spiked brine sample obtained from the desalination plant reverse osmosis waste through the ion-imprinted polymer ranged from 62.8% to 71.53%.
Collapse
Affiliation(s)
- Bassem Jamoussi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Radhouane Chakroun
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Bandar A. Al-Mur
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Riyadh F. Halawani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Fahed A. Aloufi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Anis Chaabani
- Department of Hydrology and Water Resources Management, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Naif S. Aljohani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
- Saline Water Conversion Corporation, Riyadh 11432, Saudi Arabia
| |
Collapse
|
10
|
Lee JI, Jadamba C, Yoo SC, Lee CG, Shin MC, Lee J, Park SJ. Cycling of phosphorus from wastewater to fertilizer using wood ash after energy production. CHEMOSPHERE 2023:139191. [PMID: 37307930 DOI: 10.1016/j.chemosphere.2023.139191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Quercus wood was used for thermal energy production, and wood bottom ash (WDBA) was used as a medium for water purification and soil fertilizer in accordance with the recently proposed food-water-energy nexus concept. The wood contained a gross calorific value of 14.83 MJ kg-1, and the gas generated during thermal energy production has the advantage of not requiring a desulfurization unit due to its low sulfur content. Wood-fired boilers emit less CO2 and SOX than coal boilers. The WDBA had a Ca content of 66.0%, and Ca existed in the forms of CaCO3 and Ca(OH)2. WDBA absorbed P by reacting with Ca in the form of Ca5(PO4)3OH. Kinetic and isotherm models revealed that the results of the experimental work were in good agreement with the pseudo-second-order and Langmuir models, respectively. The maximum P adsorption capacity of WDBA was 76.8 mg g-1, and 6.67 g L-1 of WDBA dose could completely remove P in water. The toxic units of WDBA tested using Daphnia magna were 6.1, and P adsorbed WDBA (P-WDBA) showed no toxicity. P-WDBA was used as an alternative P fertilizer for rice growth. P-WDBA application resulted in significantly greater rice growth in terms of all agronomic values compared to N and K treatments without P. This study proposed the utilization of WDBA, obtained from thermal energy production, to remove P from wastewater and replenish P in the soil for rice growth.
Collapse
Affiliation(s)
- Jae-In Lee
- Department of Integrated System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chuluuntsetseg Jadamba
- Department of Plant Life & Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Soo-Cheul Yoo
- Department of Plant Life & Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Myung-Chul Shin
- Department of Clean Energy, Korea Institute of Industrial Technology, Cheonan, 31056, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Seong-Jik Park
- Department of Integrated System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea; Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
11
|
El Kaim Billah R, Ayouch I, Abdellaoui Y, Kassab Z, Khan MA, Agunaou M, Soufiane A, Otero M, Jeon BH. A Novel Chitosan/Nano-Hydroxyapatite Composite for the Adsorptive Removal of Cd(II) from Aqueous Solution. Polymers (Basel) 2023; 15:polym15061524. [PMID: 36987304 PMCID: PMC10058910 DOI: 10.3390/polym15061524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
A novel polymer bio-composite based on nano-hydroxyapatite (n-Hap) and chitosan (CS) (CS/n-Hap) was synthesized to effectively address toxic cadmium ions removal from water. The composition and structure of CS/n-Hap bio-composite were analyzed through different characterization techniques. XRD patterns affirmed that the crystalline structure of n-Hap remained unaltered during CS/n-Hap synthesis, while FT-IR spectrum sustained all the characteristic peaks of both CS and n-Hap, affirming the successful synthesis of CS/n-Hap. Adsorption studies, including pH, adsorbent dosage, contact time, initial Cd(II) concentration, and temperature, were carried out to explain and understand the adsorption mechanism. Comparatively, CS/n-Hap bio-composite exhibited better Cd(II) adsorption capacity than pristine CS, with an experimental maximum uptake of 126.65 mg/g under optimized conditions. In addition, the kinetic data were well fitted to the pseudo-second-order model, indicating the formation of chemical bonds between Cd(II) and CS/n-Hap during adsorption. Furthermore, the thermodynamic study suggested that Cd(II) adsorption onto CS/n-Hap was endothermic and spontaneous. The regeneration study showed only about a 3% loss in Cd(II) uptake by CS/n-Hap after five consecutive cycles. Thus, a simple and facile approach was here developed to synthesize an eco-friendly and cost-effective material that can be successfully employed for the removal of toxic heavy metal ions from water.
Collapse
Affiliation(s)
- Rachid El Kaim Billah
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida 24000, Morocco
| | - Ikrame Ayouch
- Laboratory of Materials and Interfacial Systems, Faculty of Sciences Tétouan, University Abdelmalek Essaadi (UAE), P.O. Box 2121, Tétouan 93000, Morocco
- MASCIR Foundation, Rabat Design, Rue Mohamed EL Jazouli, Madinat EL Ifrane, Rabat 10100, Morocco
| | - Youness Abdellaoui
- Faculty of Engineering, Autonomous University of Yucatan, Mérida 97000, Mexico
- Department of Sustainability of Natural Resources and Energy, Center for Research and Advanced Studies of the National Polytechnic Institute, Saltillo 25900, Mexico
| | - Zineb Kassab
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (M.A.K.); (M.O.)
| | - Mahfoud Agunaou
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida 24000, Morocco
| | - Abdessadik Soufiane
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida 24000, Morocco
| | - Marta Otero
- Departmento de Química y Física Aplicadas, Universidad de Leon, Campus de Vegazana s/n, 24071 Leon, Spain
- Correspondence: (M.A.K.); (M.O.)
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
12
|
Sumayli A. Development of Advanced Machine Learning Models for Optimization of Methyl Ester biofuel Production from Papaya Oil: Gaussian Process Regression (GPR), Multilayer perceptron (MLP), and K-nearest neighbor (KNN) regression models. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
13
|
Preparation of a Polyaniline-Modified Hybrid Graphene Aerogel-Like Nanocomposite for Efficient Adsorption of Heavy Metal Ions from Aquatic Media. Polymers (Basel) 2023; 15:polym15051101. [PMID: 36904342 PMCID: PMC10007567 DOI: 10.3390/polym15051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This paper considers the synthesis of a novel nanocomposite based on reduced graphene oxide and oxidized carbon nanotubes modified with polyaniline and phenol-formaldehyde resin and developed through the carbonization of a pristine aerogel. It was tested as an efficient adsorbent to purify aquatic media from toxic Pb(II). Diagnostic assessment of the samples was carried out through X-ray diffractometry, Raman spectroscopy, thermogravimetry, scanning and transmission electron microscopy, and infrared spectroscopy. The carbonized aerogel was found to preserve the carbon framework structure. The sample porosity was estimated through nitrogen adsorption at 77 K. It was found that the carbonized aerogel predominantly represented a mesoporous material having a specific surface area of 315 m2/g. After carbonization, an increase in smaller micropores occurred. According to the electron images, the highly porous structure of the carbonized composite was preserved. The adsorption capacity of the carbonized material was studied for liquid-phase Pb(II) extraction in static mode. The experiment results showed that the maximum Pb(II) adsorption capacity of the carbonized aerogel was 185 mg/g (at pH 6.0). The results of the desorption studies showed a very low desorption rate (0.3%) at pH 6.5 and a rate of about 40% in a strongly acidic medium.
Collapse
|
14
|
Adsorption of Pb(II) ions from aqueous solutions by magnetite (Fe3O4) nanoparticles functionalized with two different Schiff base ligands. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Singh S, U B, Kumar Naik TSS, Behera SK, Khan NA, Singh J, Singh L, Ramamurthy PC. Graphene oxide-based novel MOF nanohybrid for synergic removal of Pb (II) ions from aqueous solutions: Simulation and adsorption studies. ENVIRONMENTAL RESEARCH 2023; 216:114750. [PMID: 36370821 DOI: 10.1016/j.envres.2022.114750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals represent a considerable threat, and the current study deals with synthesizing a novel MOF nanocomposite by intercalating graphene oxide (GO) and linker UiO-66-NDC. It was shown that UiO-66-NDC/GO had enhanced the removal efficiency of Pb (II) ions at pH 6. The adsorption kinetics data followed the PSO (Type 2) representing chemisorption. Adsorption data were also fitted with three different isotherms, namely Temkin, Freundlich, & Langmuir, and the Temkin model exhibited the best correlation (R2 0.99), representing the chemisorption nature of the adsorption process. The maximum adsorption capacity (qmax) of Pb (II) ions using Langmuir was found to be 254.45 mg/g (298 K). The Pb (II) adsorption process was confirmed to be exothermic and spontaneous as the thermodynamic parameters H° and G° were determined to have negative values. MOF nanocomposite also represents significant reusability for up to four regeneration cycles using 0.01 M HCl; for the next four, it works quite efficiently after regeneration. Meanwhile, the simulation findings confirm the superior dynamic stability (∼08 times) of the MOF nanocomposite as compared to the GO system. The removal of Pb (II) from simulated wastewater samples using a super nano-adsorbent using a MOF nanocomposite is described here for the first time.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, India
| | - Basavaraju U
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - T S Sunil Kumar Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Sushant Kumar Behera
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Nadeem A Khan
- Department of Civil Engineering, Mewat Engineering College Nuh, Haryana, 122107, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, India.
| |
Collapse
|
16
|
Al-Absi RS, Khan M, Abu-Dieyeh MH, Ben-Hamadou R, Nasser MS, Al-Ghouti MA. The recovery of strontium ions from seawater reverse osmosis brine using novel composite materials of ferrocyanides modified roasted date pits. CHEMOSPHERE 2023; 311:137043. [PMID: 36336019 DOI: 10.1016/j.chemosphere.2022.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/10/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this study, three types of adsorbents were used to remove and recover strontium ions (Sr2+) from aqueous and brine solution of seawater reverse osmosis (SWRO), namely roasted date pits (RDP) and RDP modified using copper and nickel salts of potassium hexacyanoferrates to obtain RDP-FC-Cu, and RDP-FC-Ni, respectively. Additionally, the influence of various parameters, including pH, temperature, initial concentration, and co-existing ions was also evaluated. The results revealed that pH 10 was the optimum pH in which the maximum Sr2+ ions were adsorbed. Additionally, all adsorbents had a high adsorption capacity (99.9 mg/g) for removing Sr2+ ions at the highest concentration (100 mg/L) and a temperature of 45 °C was found to be the optimum temperature. A scanning electron microscopy for the adsorbents before and after the adsorption of strontium showed the remarkable pore filling onto the active sites of all adsorbents. The thermodynamics parameter demonstrated that the adsorption occurred in an endothermic environment, and that, the reaction was spontaneous, and favorable at all the temperatures investigated. According to isotherm studies, the Langmuir model was the best-fit isotherm model; indicating that strontium adsorption involved the formation of monolayers and multilayers at higher temperatures (45 °C). Furthermore, high desorption percentages (above 90%) were achieved for all the adsorbents when an HCl concentration of 0.5 M was used. This showed the high reusability of the adsorbents. Lastly, the adsorption of strontium from the SWRO brine containing a number of metal ions was extremely sufficient as all the adsorbents were efficient to adsorb a high amount of Sr2+ despite the presence of other competing ions.
Collapse
Affiliation(s)
- Rana S Al-Absi
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mariam Khan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed H Abu-Dieyeh
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Radhouane Ben-Hamadou
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mustafa S Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
17
|
Li J, Liao L, Jia Y, Tian T, Gao S, Zhang C, Shen W, Wang Z. Magnetic Fe3O4/ZIF-8 optimization by Box-Behnken design and its Cd(II)-adsorption properties and mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Soudani A, Youcef L, Bulgariu L, Youcef S, Toumi K, Soudani N. Characterizing and modeling of Oak fruit shells biochar as an adsorbent for the removal of Cu, Cd, and Zn in single and in competitive systems. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Safarzadeh H, Peighambardoust SJ, Mousavi SH, Foroutan R, Mohammadi R, Peighambardoust SH. Adsorption ability evaluation of the poly(methacrylic acid-co-acrylamide)/cloisite 30B nanocomposite hydrogel as a new adsorbent for cationic dye removal. ENVIRONMENTAL RESEARCH 2022; 212:113349. [PMID: 35490829 DOI: 10.1016/j.envres.2022.113349] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The performance of poly(methacrylic acid-co-acrylamide)/Cloisite 30B nanocomposite (poly(MAA-co-AAm)/Cl30B) hydrogel to adsorb methylene blue (MB) dye from aqueous solutions was investigated and the adsorption efficiency was improved by incorporating Cloisite 30B nanoclays in the adsorbent structure. The hydrogels were analyzed using FTIR, XRD, TGA, and SEM analysis. The effect of adsorbent dose, temperature, initial dye concentration, contact time, and pH on the efficiency of the adsorption process was investigated. Adsorption efficiencies of 98.57 and 97.65% were obtained for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels, respectively. Kinetic study revealed that the adsorption process followed pseudo-first-order kinetic model and α-parameter values of 6.558 and 1.113 mg/g.min were obtained for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels, respectively indicating a higher ability of nanocomposite hydrogel in adsorbing MB-dye. In addition, the results of the intra-particle diffusion model showed that various mechanisms such as intra-particle diffusion and liquid film penetration are important in the adsorption. The Gibbs free energy parameter of adsorption process showed negative values of -256.52 and -84.071 J/mol.K for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels indicating spontaneous nature of the adsorption. The results of enthalpy and entropy showed that the adsorption process was exothermic and random collisions were reduced during the adsorption. The equilibrium data for the adsorption process using poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels followed Freundlich and Langmuir isotherm models, respectively. The maximum adsorption capacity values of 32.83 and 21.92 mg/g were obtained for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels, respectively. Higher adsorption capacity of nanocomposite hydrogel was attributed to the presence of Cloisite 30B clay nanoparticles in its structure. In addition, results of RL, n, and E parameters showed that the adsorption process was performed optimally and physically.
Collapse
Affiliation(s)
- Hamid Safarzadeh
- Separation Processes & Nanotechnology Lab, Faculty of Caspian, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Seyed Hamed Mousavi
- Separation Processes & Nanotechnology Lab, Faculty of Caspian, College of Engineering, University of Tehran, Tehran, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
20
|
Abdelbasset WK, Elkholi SM, Ahmed Ismail K, A.A.M. Alalwani T, Hachem K, Mohamed A, Agustiono Kurniawan T, Andreevna Rushchitc A. Modeling and computational study on prediction of pharmaceutical solubility in supercritical CO2 for manufacture of nanomedicine for enhanced bioavailability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Focus on the removal of lead and cadmium ions from aqueous solutions using starch derivatives: A review. Carbohydr Polym 2022; 290:119463. [DOI: 10.1016/j.carbpol.2022.119463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022]
|
22
|
El-Naggar ME, Radwan EK, Rashdan HRM, El-Wakeel ST, Koryam AA, Sabt A. Simultaneous removal of Pb 2+ and direct red 31 dye from contaminated water using N-(2-hydroxyethyl)-2-oxo-2 H-chromene-3-carboxamide loaded chitosan nanoparticles. RSC Adv 2022; 12:18923-18935. [PMID: 35873340 PMCID: PMC9241362 DOI: 10.1039/d2ra02526d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
This study reports the preparation of a new material that can remove synthetic dyes and trace metals simultaneously. A new coumarin derivative was synthesized and its chemical structure was inferred from spectral data (FT-IR, 1H-NMR, 13C-NMR). Meanwhile, chitosan nanoparticles (CsNPs) were prepared then used as a carrier for two different concentrations of the coumarin derivative (C1@CsNPs and C2@CsNPs). The TEM, SEM and DLS findings illustrated that the prepared nanocomposites exhibited spherical shape and small size (less than 200 nm). The performance of the prepared material for the removal of an anionic dye (direct red 31, DR31) and cationic trace metal (Pb2+) was evaluated in unary and binary systems. The results revealed that complete removal of 10 mg L-1 of DR31 and Pb2+ in unary system was achieved at pHo 3.0 and 5.5 using 0.5 and 2.0 g L-1, respectively, of C2@CsNPs. The adsorption of DR31 and Pb2+ followed different mechanisms as deduced from the effect of pHo, kinetic, isotherm and binary adsorption studies. The adsorption of DR31 followed the Langmuir isotherm model and the pseudo-first-order kinetic model. While, the adsorption of Pb2+ followed Freundlich isotherm model and Elovich kinetic model. In the binary system, the co-presence of DR31 and Pb2+ did not affect the adsorption of each other's. Overall, the prepared material showed promising results for the removal of anionic dyes and cations trace metals from contaminated water.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre 33 El Buhouth St, Dokki Giza 12622 Egypt
| | - Emad K Radwan
- Water Pollution Research Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St Dokki 12622 Egypt
| | - Shaimaa T El-Wakeel
- Water Pollution Research Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Asmaa A Koryam
- Water Pollution Research Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Ahmed Sabt
- Department of Natural Compounds Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| |
Collapse
|
23
|
Optimization of Heterogeneous Catalyst-assisted Fatty Acid Methyl Esters Biodiesel Production from Soybean Oil with Different Machine Learning Methods. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Insight into the adsorption performance of novel kaolinite-cellulose/cobalt oxide nanocomposite as green adsorbent for liquid phase abatement of heavy metal ions: Modelling and mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Parsaei M, Roudbari E, Piri F, El-Shafay AS, Su CH, Nguyen HC, Alashwal M, Ghazali S, Algarni M. Neural-based modeling adsorption capacity of metal organic framework materials with application in wastewater treatment. Sci Rep 2022; 12:4125. [PMID: 35260785 PMCID: PMC8904475 DOI: 10.1038/s41598-022-08171-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
We developed a computational-based model for simulating adsorption capacity of a novel layered double hydroxide (LDH) and metal organic framework (MOF) nanocomposite in separation of ions including Pb(II) and Cd(II) from aqueous solutions. The simulated adsorbent was a composite of UiO-66-(Zr)-(COOH)2 MOF grown onto the surface of functionalized Ni50-Co50-LDH sheets. This novel adsorbent showed high surface area for adsorption capacity, and was chosen to develop the model for study of ions removal using this adsorbent. A number of measured data was collected and used in the simulations via the artificial intelligence technique. Artificial neural network (ANN) technique was used for simulation of the data in which ion type and initial concentration of the ions in the feed was selected as the input variables to the neural network. The neural network was trained using the input data for simulation of the adsorption capacity. Two hidden layers with activation functions in form of linear and non-linear were designed for the construction of artificial neural network. The model's training and validation revealed high accuracy with statistical parameters of R2 equal to 0.99 for the fitting data. The trained ANN modeling showed that increasing the initial content of Pb(II) and Cd(II) ions led to a significant increment in the adsorption capacity (Qe) and Cd(II) had higher adsorption due to its strong interaction with the adsorbent surface. The neural model indicated superior predictive capability in simulation of the obtained data for removal of Pb(II) and Cd(II) from an aqueous solution.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Elham Roudbari
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Farhad Piri
- Electrical Engineering Department, Amirkabir University of Technology, Hafez Avenue, Tehran, Iran
| | - A S El-Shafay
- Department of Mechanical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| | - Hoang Chinh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - May Alashwal
- Department of Computer Science, Jeddah International College, Jeddah, Saudi Arabia
| | - Sami Ghazali
- Mechanical and Materials Engineering Department, Faculty of Engineering, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Mohammed Algarni
- Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Saudi Arabia
| |
Collapse
|
26
|
Zhu X, Wang X, Liu K, Zhou S, Alqsair UF, El-Shafay A. Machine learning simulation of Cr (VI) separation from aqueous solutions via a hierarchical nanostructure material. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Feng L, Liu J, Abu-Hamdeh NH, Bezzina S, Eshaghi Malekshah R. Molecular dynamics and quantum simulation of different cationic dyes removal from contaminated water using UiO-66 (Zr)-(COOH)2 metal–organic framework. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Yin G, Jameel Ibrahim Alazzawi F, Mironov S, Reegu F, El-Shafay A, Lutfor Rahman M, Su CH, Lu YZ, Chinh Nguyen H. Machine learning method for simulation of adsorption separation: Comparisons of model’s performance in predicting equilibrium concentrations. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
29
|
Implementation of AdaBoost and genetic algorithm machine learning models in prediction of adsorption capacity of nanocomposite materials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Gao J, Song M, Li T, Zhao Y, Wang A. Water-soluble carboxymethyl chitosan (WSCC)-modified single-walled carbon nanotubes (SWCNTs) provide efficient adsorption of Pb(ii) from water. RSC Adv 2022; 12:6821-6830. [PMID: 35424645 PMCID: PMC8981766 DOI: 10.1039/d2ra00066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Nanocomposites play a key role in the removal of toxic metal(loid)s from environmental water. In this study, we investigated the adsorption capability of water-soluble carboxymethyl chitosan (WSCC)-modified functionally oxidized single walled carbon nanotubes (oSWCNTs) for rapid and efficient removal of toxic Pb(ii) from water. The WSCC–oSWCNTs nanocomposite was prepared by an acid treatment of SWCNTs followed by an ultrasonic dispersion process using WSCC as dispersant. The morphology and chemical characteristics of the WSCC–oSWCNTs nanocomposite were further identified using various characterization techniques (i.e., transmission electron microscopy, TEM; scanning electron microscopy, SEM; Raman spectra; Fourier transform infrared spectroscopy, FTIR; X-ray photoelectron spectroscopy, XPS; nitrogen adsorption–desorption isotherm test). The efficiency of the adsorption process in batch experiments was investigated via determining various factor effects (i.e. WSCC–oSWCNTs nanocomposite concentration, solution pH, initial Pb(ii) concentration, contact time, and reaction temperature). Kinetic results showed that the adsorption process followed a pseudo-second-order, while an isotherm results study showed that the adsorption process followed the Langmuir and Freundlich isotherm models at the same time. In addition, the van't Hoff equation was used to calculate thermodynamic parameters for assessing the endothermic properties and spontaneity of the adsorption process. The WSCC–oSWCNTs nanocomposite manifested a high adsorption capacity for Pb(ii) (113.63 mg g−1) via electrostatic interactions and ion-exchange, as its adsorption rate could reach up to 98.72%. This study, therefore, provides a novel adsorbent for the removal and detection of harmful residues (i.e. toxic metal(loid)s) from environmental water, such as industry wastewater treatment and chemical waste management. A water-dispersible WSCC–oSWCNTs nanocomposite prepared for efficient Pb(ii) uptake from water. The removal efficiency is still higher than 80% after 4 adsorption–desorption cycles, and the Pb(ii) can be adsorbed with high selectivity and stability.![]()
Collapse
Affiliation(s)
- Jinling Gao
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Mingzhe Song
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Tongtong Li
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Yuyao Zhao
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Anxu Wang
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| |
Collapse
|
31
|
Egbosiuba TC, Egwunyenga MC, Tijani JO, Mustapha S, Abdulkareem AS, Kovo AS, Krikstolaityte V, Veksha A, Wagner M, Lisak G. Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126993. [PMID: 34530269 DOI: 10.1016/j.jhazmat.2021.126993] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nickel nanoparticles (NiNPs) supported on activated multi-walled carbon nanotubes (MWCNTs) were used as an adsorbent applied towards Pb(II), As(V) and Cd(II) remediation from industrial wastewater. The result revealed the hydrophilic surface of MWCNTs-KOH was enhanced with the incorporation of NiNPs enabling higher surface area, functional groups and pore distribution. Comparatively, the removal of Pb(II), As(V) and Cd(II) on the various adsorbents was reported as NiNPs (58.6 ± 4.1, 46.8 ± 3.7 and 40.5 ± 2.5%), MWCNTs-KOH (68.4 ± 5.0, 65.5 ± 4.2 and 50.7 ± 3.4%) and MWCNTs-KOH@NiNPs (91.2 ± 8.7, 88.5 ± 6.5 and 80.6 ± 5.8%). Using MWCNTs-KOH@NiNPs, the maximum adsorption capacities of 481.0, 440.9 and 415.8 mg/g were obtained for Pb(II), As(V) and Cd(II), respectively. The experimental data were best suited to the Langmuir isotherm and pseudo-second order kinetic model. The fitness of experimental data to the kinetic models in a fixed-bed showed better fitness to Thomas model. The mechanism of metal ion adsorption onto MWCNTs-KOH@NiNPs show a proposed electrostatic attraction, surface adsorption, ion exchange, and pore diffusion due to the incorporated NiNPs. The nanocomposite was highly efficient for 8 adsorption cycles. The results of this study indicate that the synthesized nanocomposite is highly active with capacity for extended use in wastewater treatment.
Collapse
Affiliation(s)
- Titus Chinedu Egbosiuba
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli, Anambra State, Nigeria; Department of Chemical Engineering, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Michael Chika Egwunyenga
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli, Anambra State, Nigeria; Department of Chemical Engineering, Delta State Polytechnic, PMB 1030, Ogwashi-Uku, Delta State, Nigeria
| | - Jimoh Oladejo Tijani
- Department of Chemistry, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Saheed Mustapha
- Department of Chemistry, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Ambali Saka Abdulkareem
- Department of Chemical Engineering, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Abdulsalami Sanni Kovo
- Department of Chemical Engineering, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Vida Krikstolaityte
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Michal Wagner
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
32
|
Zeng K, Hachem K, Kuznetsova M, Chupradit S, Su CH, Nguyen HC, El-Shafay A. Molecular dynamic simulation and artificial intelligence of lead ions removal from aqueous solution using magnetic-ash-graphene oxide nanocomposite. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Oladoye PO. Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste)water: A state-of-the-art review. CHEMOSPHERE 2022; 287:132130. [PMID: 34517237 DOI: 10.1016/j.chemosphere.2021.132130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Pb(II) ions is an inorganic pollutant that is present in the environment. Its presence affects both human health and ecosystem. Economically, amongst many wastewater treatment approaches, adsorption is both cheap and environmentally friendly for removing Pb(II) ion from contaminated water. In this state of the art review, about 227 research and review based publications on adsorption-based studies between 1989 and 2021, which have used various materials as adsorbents of Pb (II) ions, were selected and reviewed for more evaluation. A number of adsorbents which have been reported in these literatures for the adsorption of Pb(II) ion are agrobased, modified agrobased, clay minerals, modified/nanocomposite clay minerals, silica-based, zeolite-based and chitosan-based adsorbents, respectively. The adsorption potential of the adsorbents is exhibited under optimum experimental conditions. The unmodified and modified agro based adsorbents were shown to exhibit the greatest Pb(II) adsorption capacity, with great potential for further exploration, compared to the others afore-listed. The effects of operating parameters such as pH, initial metal ion concentration, adsorbent dose and reaction time are discussed. Furthermore, in order to comprehend the nature of adsorption process between the adsorbent and contaminant (Pb(II)), thermodynamic analyses of adsorption systems are intensively described. All these discussions revealed the applicability of adsorption process for toxic Pb(II) ions removal with respect to wastewater treatment techniques. The review concludes by commenting on the various adsorbents' adsorption capacity and proposes some studies that should also be considered in future works.
Collapse
Affiliation(s)
- Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA; Analytical/Environmental Chemistry Unit, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B, 4000, Ogbomoso, Nigeria.
| |
Collapse
|
34
|
Gul S, Memon FN, Memon S. Optimization of toxic metal adsorption on DEA-calix[4]arene appended silica resin using a central composite design. NEW J CHEM 2022. [DOI: 10.1039/d1nj05669g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An assessment of central composite design (CCD) for the optimization of the adsorption of toxic metal ions using a DEA-calix[4]arene (DEA-C4) based silica resin.
Collapse
Affiliation(s)
- Samiha Gul
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Fakhar N. Memon
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Shahabuddin Memon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| |
Collapse
|
35
|
Zhou G, Zhang Y, Liang Y, Jiang Y. Preparation of nanocomposite Fe3O4@SiO2-PA for effective removal of Sb(III) from aqueous solutions: Kinetics, equilibrium and thermodynamic evaluation. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.2017970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Guoqiang Zhou
- Textile College, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang, China
| | - Yan Zhang
- Textile College, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang, China
| | - YuHan Liang
- Textile College, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang, China
| | - Yiting Jiang
- Textile College, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang, China
| |
Collapse
|
36
|
Huang X, Lin Y, Li C, Liao M, Li Y, Jing Z. Magnetic Double-Crosslinked Nanocomposite Hydrogel Beads for Methylene Blue Removal. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21350066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Al-Absi RS, Abu-Dieyeh MH, Ben-Hamadou R, Nasser MS, Al-Ghouti MA. Novel composite materials of modified roasted date pits using ferrocyanides for the recovery of lithium ions from seawater reverse osmosis brine. Sci Rep 2021; 11:18896. [PMID: 34556769 PMCID: PMC8460665 DOI: 10.1038/s41598-021-98438-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
In this paper, novel composite materials from modified roasted date pits using ferrocyanides were developed and investigated for the recovery of lithium ions (Li+) from seawater reverse osmosis (RO) brine. Two composite materials were prepared from roasted date pits (RDP) as supporting material, namely potassium copper hexacyanoferrate-date pits composite (RDP-FC-Cu), and potassium nickel hexacyanoferrate-date pits composite (RDP-FC-Ni). The physiochemical characterization of the RO brine revealed that it contained a variety of metals and salts such as strontium, zinc, lithium, and sodium chlorides. RDP-FC-Cu and RDP-FC-Ni exhibited enhanced chemical and physical characteristics than RDP. The optimum pH, which attained the highest adsorption removal (%) for all adsorbents, was at pH 6. In addition, the highest adsorption capacities for the adsorbents were observed at the initial lithium concentration of 100 mg/L. The BET surface area analysis confirmed the increase in the total surface area of the prepared composites from 2.518 m2/g for RDP to 4.758 m2/g for RDP-FC-Cu and 5.262 m2/g for RDP-FC-Ni. A strong sharp infrared peak appeared for the RDP-FC-Cu and RDP-FC-Ni at 2078 cm-1. This peak corresponds to the C≡N bond, which indicates the presence of potassium hexacyanoferrate, K4[Fe(CN)6]. The adsorption removal of lithium at a variety of pH ranges was the highest for RDP-FC-Cu followed by RDP-FC-Ni and RDP. The continuous increase in the adsorption capacity for lithium with increasing initial lithium concentrations was also observed. This could be mainly attributed to enhance and increased lithium mass transfer onto the available adsorption active sites on the adsorbents' surface. The differences in the adsorption in terms of percent adsorption removal were clear and significant between the three adsorbents (P value < 0.05). All adsorbents in the study showed a high lithium desorption percentage as high as 99%. Both composites achieved full recoveries of lithium from the RO brine sample despite the presence of various other competing ions.
Collapse
Affiliation(s)
- Rana S Al-Absi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, State of Qatar, Qatar
| | - Mohammed H Abu-Dieyeh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, State of Qatar, Qatar
| | - Radhouane Ben-Hamadou
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, State of Qatar, Qatar
| | - Mustafa S Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha, State of Qatar, Qatar
| | - Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, State of Qatar, Qatar.
| |
Collapse
|
38
|
Zhu H, Zhu L, Sun Z, Khan A. Machine learning based simulation of an anti-cancer drug (busulfan) solubility in supercritical carbon dioxide: ANFIS model and experimental validation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Husein DZ, Hassanien R, Khamis M. Cadmium oxide nanoparticles/graphene composite: synthesis, theoretical insights into reactivity and adsorption study. RSC Adv 2021; 11:27027-27041. [PMID: 35480026 PMCID: PMC9037664 DOI: 10.1039/d1ra04754j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Graphene-based metal oxide nanocomposites are interesting and promising kinds of nanocomposites due to their large specific area, fast kinetics, and specific affinity towards heavy metal contaminants. In this work, a facile and cost-effective route was used to synthesize CdO nanoparticles (CdO NPs) and graphene-based CdO nanocomposite (G-CdO). The prepared nanomaterials were characterized and explored for lead removal from water. Both CdO NPs and G-CdO composite exhibited excellent sorption capacity of 427 and 398 mg g-1, respectively, at pH 4.8 and T = 298 K, which was superior to individual graphene and many other adsorbents. The results indicated that the recovered nanomaterials endure 4 times recyclability retaining up to 89% lead uptake efficiency. To complement the experimental study, DFT calculations were performed to investigate the stability of the formed G-CdO composite compared to CdO NPs; the reactivity of G-CdO compared to plain graphene as well as the interaction insights between graphene and CdO clusters were studied using natural-bond-orbital (NBO), electron-localization-function (ELF) and reduced-density-gradient (RDG) analyses.
Collapse
Affiliation(s)
- Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University El-Kharja 72511 Egypt
| | - Reda Hassanien
- Chemistry Department, Faculty of Science, New Valley University El-Kharja 72511 Egypt
| | - Mona Khamis
- Chemistry Department, Faculty of Science, New Valley University El-Kharja 72511 Egypt
| |
Collapse
|
40
|
Synthesis of β-Ca2P2O7 as an Adsorbent for the Removal of Heavy Metals from Water. SUSTAINABILITY 2021. [DOI: 10.3390/su13147859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the present work, beta-calcium pyrophosphate (β-Ca2P2O7) was investigated as a potential adsorbent for the removal of heavy metal ions from water. Single-phase β-Ca2P2O7 powders were synthesized by a simple, scalable and cost-effective wet precipitation method followed by annealing at 800 °C, which was employed for the conversion of as-precipitated brushite (CaHPO4∙2H2O) to β-Ca2P2O7. Physicochemical properties of the sorbent were characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA/DSC), scanning electron microscopy (SEM) and low temperature adsorption–desorption of nitrogen (BET method). The synthesized powders consisted of porous plate-like particles with micrometer dimensions. Specific surface area calculated by the BET method was found to be 7 m2 g−1. For the estimation of sorption properties, the aqueous model solutions containing different metal ions (Al3+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, Pb2+, Sn2+, Sr2+ and Zn2+) were used. The adsorption test revealed that β-Ca2P2O7 demonstrates the highest adsorption capacity for Pb2+ and Sn2+ ions, while the lowest capacity was observed towards Sr2+, Ni2+ and Co2+ ions. The optimal pH value for the removal of Pb2+ ions was determined to be 2, which is also related to the low solubility of β-Ca2P2O7 at this pH. The adsorption capacity towards Pb2+ ions was calculated as high as 120 mg g−1.
Collapse
|
41
|
|
42
|
Ghaforinejad H, Marjani A, Mazaheri H, Joshaghani AH. Molecular separation of ions from aqueous solutions using modified nanocomposites. Sci Rep 2021; 11:13561. [PMID: 34193881 PMCID: PMC8245460 DOI: 10.1038/s41598-021-89371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Herein, two novel porous polymer matrix nanocomposites were synthesized and used as adsorbents for heavy metal uptake. Methacrylate-modified large mesoporous silica FDU-12 was incorporated in poly(methyl methacrylate) matrix through an in-situ polymerization approach. For another, amine-modified FDU-12 was composited with Nylon 6,6 via a facile solution blending protocol. Various characterization techniques including small-angle X-ray scattering, FTIR spectroscopy, field emission-scanning electron microscopy, transmission electron microscopy, porosimetry, and thermogravimetric analysis have been applied to investigate the physical and chemical properties of the prepared materials. The adsorption of Pb(II) onto the synthesized nanocomposites was studied in a batch system. After study the effect of solution pH, adsorbent amount, contact time, and initial concentration of metal ion on the adsorption process, kinetic studies were also conducted. For both adsorbents, the Langmuir and pseudo-second-order models were found to be the best fit to predict isotherm and kinetics of adsorption. Based on the Langmuir model, maximum adsorption capacities of 105.3 and 109.9 mg g-1 were obtained for methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6,6, respectively.
Collapse
Affiliation(s)
- Hamed Ghaforinejad
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | - Azam Marjani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran.
| | - Hossein Mazaheri
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | | |
Collapse
|
43
|
Cao Y, Malekshah RE, Heidari Z, Pelalak R, Marjani A, Shirazian S. Molecular dynamic simulations and quantum chemical calculations of adsorption process using amino-functionalized silica. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115544] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|