1
|
Amrutha B, Anand Prabu A, Pathak M. Enhancing piezoelectric effect of PVDF electrospun fiber through NiO nanoparticles for wearable applications. Heliyon 2024; 10:e29192. [PMID: 38601609 PMCID: PMC11004416 DOI: 10.1016/j.heliyon.2024.e29192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Flexible electrospun fiber-based piezoelectric nanogenerator (PENG) has attracted a lot of interest due to its ability of generating electrical energy from mechanical energy sources. The present work aims to improve the piezoelectric output of PENG devices based on electrospun polyvinylidene fluoride (PVDF) doped with nickel oxide nanoparticles (NiO NPs) in different concentrations (2, 4, 6, 8 and 10 wt.-%). Crystalline phase changes and β-crystalline content in electrospun fibers were evaluated using XRD and FTIR-ATR, respectively. Surface morphology and surface roughness of the electrospun fibers were observed using FE-SEM and AFM, respectively. The hydrophobic nature of the fibers was analyzed using a wettability test. PENG output voltage and short-circuit current performance of neat PVDF and PVDF doped with NiO (PN) composite electrospun fibers were calculated using a customized variable-pressure setup with an optimized force of 1.0 kgf and 1.0 Hz frequency. Neat PVDF-based PENG exhibited only 1.7 V and 0.7 μA, whereas, PVDF doped with 6 wt.-% NiO NP (PN-6) based PENG generated a high output voltage of 5.5 V and 1.83 μA current. The optimized PN-6 PENG device is demonstrated for use in wearable devices towards identifying certain body movements like tapping, wrist movement, walking and running.
Collapse
Affiliation(s)
- Bindhu Amrutha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Arun Anand Prabu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhvesh Pathak
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
2
|
Tan SM, AbouAssi R, Dianita R, Murugaiyah V, SiokYee C. An Insight into Viscosity and Conductivity in the Formulation of Co-axial Electrospun Carica papaya Leaf Extract. Drug Dev Ind Pharm 2024:1-21. [PMID: 38530403 DOI: 10.1080/03639045.2024.2335527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Objective: This research aimed to investigate the application of the coaxial electrospun method for the production of natural extracts (papaya leaf extract) fibre films. This was achieved through utilising different polymers and with a focus on the conductivity and the viscosity of polymer solutions as critical parameters to generate successful fibres. Significance: Electrospinning is a promising trending manufacturing method for incorporating thermolabile herbal extracts using coaxial electrospun features. However, the complexity of the electrospinning process and the feasibility of the product required precise scrutiny. Methods: The electrospinning solution parameters (conductivity and viscosity) were evaluated by employing various ratios of Eudragit L100 (EL100) and Eudragit L100-55 (EL100-55) pre-spinning polymeric blend solutions. The electrospinning process and ambient parameters were optimised. Following that, the in-silico physicochemical properties of phytochemical marker, rutin, were illustrated using SwissADME web tool. Both freeze-dried Carica papaya leaf extract and its produced films were characterised using Scanning Electron Microscopy (SEM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), polarised light microscopy, and X-Ray Powder Diffraction (XRPD). Results: The optimal values of conductivity (≈40-44 × 10-4 S/m) and viscosity (≈32-42 × 10-3 Pa·s) were determined for producing evenly distributed and small fibre diameters in SEM images. These parameters significance was highlighted in acquiring and maintaining adequate tangential stress for fibre elongation, which would consequently affect the morphology and diameter of the fibres formed. Conclusion: In conclusion, the solution, process, and ambient parameters are significant in developing natural extracts into films via electrospinning technology, and this includes the promising Carica papaya leaf extract films produced by coaxial electrospinning.
Collapse
Affiliation(s)
- Siew Mei Tan
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Reem AbouAssi
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- EDEN Research Group, Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun Kupri, Kirkuk, 36001, Iraq
| | - Roza Dianita
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Chan SiokYee
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
3
|
Mercante LA, Teodoro KBR, dos Santos DM, dos Santos FV, Ballesteros CAS, Ju T, Williams GR, Correa DS. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers (Basel) 2023; 15:4299. [PMID: 37959981 PMCID: PMC10647808 DOI: 10.3390/polym15214299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Electrospun nanofibrous membranes have garnered significant attention in antimicrobial applications, owing to their intricate three-dimensional network that confers an interconnected porous structure, high specific surface area, and tunable physicochemical properties, as well as their notable capacity for loading and sustained release of antimicrobial agents. Tailoring polymer or hybrid-based nanofibrous membranes with stimuli-responsive characteristics further enhances their versatility, enabling them to exhibit broad-spectrum or specific activity against diverse microorganisms. In this review, we elucidate the pivotal advancements achieved in the realm of stimuli-responsive antimicrobial electrospun nanofibers operating by light, temperature, pH, humidity, and electric field, among others. We provide a concise introduction to the strategies employed to design smart electrospun nanofibers with antimicrobial properties. The core section of our review spotlights recent progress in electrospun nanofiber-based systems triggered by single- and multi-stimuli. Within each stimulus category, we explore recent examples of nanofibers based on different polymers and antimicrobial agents. Finally, we delve into the constraints and future directions of stimuli-responsive nanofibrous materials, paving the way for their wider application spectrum and catalyzing progress toward industrial utilization.
Collapse
Affiliation(s)
- Luiza A. Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-280, BA, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Danilo M. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Camilo A. S. Ballesteros
- Bachelor in Natural Sciences and Environmental Education, Pedagogical and Technological University of Colombia (UPTC), Tunja 150003, Colombia;
| | - Tian Ju
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
4
|
Afsharipour S, Kavianipoor S, Ranjbar M, Bagheri AM, Lari Najafi M, Banat IM, Ohadi M, Dehghannoudeh G. Fabrication and characterization of lipopeptide biosurfactant-based electrospun nanofibers for use in tissue engineering. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:968-976. [PMID: 37633459 DOI: 10.1016/j.pharma.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanofibers are a class of nanomaterial with specific physicochemical properties and characteristics making them quite sought after and investigated by researchers. Lipopeptide biosurfactant (LPB) formulation properties were previously established in wound healing. LPB were isolated from in vitro culture of Acinetobacter junii B6 and loaded on nanofibers formulation produced by electrospinning method with different ratios of carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), and Poloxamer. Numerous experimental control tests were carried out on formulations, including physicochemical properties which were evaluated by using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), morphology study by scanning electron microscopy (SEM), and thermal stability. The best nanofibers formulation was obtained by the electrospinning method, with a voltage of 19.8 volts, a discharge capacity of 1cm/h, a cylindrical rotating velocity of 100rpm, and a needle interval of 7cm from the cylinder, which continued for 7hours. The formulation contained 2% (w/v) CMC, 10% (w/v) poloxamer, 9% (w/v) PVA, and 5% (w/v) LPB. This formula had desirable physicochemical properties including spreadability, stability, and uniformity with the particle size of about 590nm.
Collapse
Affiliation(s)
- Sepehr Afsharipour
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samane Kavianipoor
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Mohammad Bagheri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M Banat
- Pharmaceutical Research Group, School of Biomedical Sciences, Ulster University, Coleraine BT51 1SA, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
6
|
Yan BY, Cao ZK, Hui C, Sun TC, Xu L, Ramakrishna S, Yang M, Long YZ, Zhang J. MXene@Hydrogel composite nanofibers with the photo-stimulus response and optical monitoring functions for on-demand drug release. J Colloid Interface Sci 2023; 648:963-971. [PMID: 37331077 DOI: 10.1016/j.jcis.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
The photo-stimulus response has the advantage of non-invasiveness, which could be used to control the "on" and "off" of drug release achieving on-demand release. Herein, we design a heating electrospray during electrospinning to prepare photo-stimulus response composite nanofibers consisting of MXene@Hydrogel. This heating electrospray enables to spray MXene@Hydrogel during the electrospinning process, and the hydrogel is uniformly distributed which cannot be achieved by the traditional soaking method. In addition, this heating electrospray can also overcome the difficulty that hydrogels are hard to be uniformly distributed in the inner fiber membrane.The "on" and "off" state of drug release could be controlled by light. Not only near infrared (NIR) light but also sunlight could trigger the drug release, which could benefit outdoor use when cannot find NIR light. Evidence by hydrogen bond has been formed between MXene and Hydrogel, the mechanical property of MXene@Hydrogel composite nanofibers is significantly enhanced, which is conducive to the application of human joints and other parts that need to move. These nanofibers also possess fluorescence property, which is further used to real-time monitor the in-vivo drug release. No matter the fast or slow release, this nanofiber can achieve sensitive detection, which is superior to the current absorbance spectrum method.
Collapse
Affiliation(s)
- Bing-Yu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Zhi-Kai Cao
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Chao Hui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Tian-Cai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Lei Xu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Min Yang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China; School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520 China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China.
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China.
| |
Collapse
|
7
|
Yang X, Wang Q, Zhang A, Shao X, Liu T, Tang B, Fang G. Strategies for sustained release of heparin: A review. Carbohydr Polym 2022; 294:119793. [PMID: 35868762 DOI: 10.1016/j.carbpol.2022.119793] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
Heparin, a sulfate-containing linear polysaccharide, has proven preclinical and clinical efficacy for a variety of disorders. Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), and ultra-low-molecular-weight heparin (ULMWH), is administered systematically, in the form of a solution in the clinic. However, it is eliminated quickly, due to its short half-life, especially in the case of UFH and LMWH. Frequent administration is required to ensure its therapeutic efficacy, leading to poor patient compliance. Moreover, heparin is used to coat blood-contacting medical devices to avoid thrombosis through physical interaction. However, the short-term durability of heparin on the surface of the stent limits its further application. Various advanced sustained-release strategies have been used to prolong its half-life in vivo as preparation technologies have improved. Herein, we briefly introduce the pharmacological activity and mechanisms of action of heparin. In addition, the strategies for sustained release of heparin are comprehensively summarized.
Collapse
Affiliation(s)
- Xuewen Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xinyao Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
8
|
Dai J, Hu W, Yang H, Li C, Cui H, Li X, Lin L. Controlled release and antibacterial properties of PEO/casein nanofibers loaded with Thymol/β-cyclodextrin inclusion complexes in beef preservation. Food Chem 2022; 382:132369. [PMID: 35152025 DOI: 10.1016/j.foodchem.2022.132369] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/04/2021] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
There are still many limitations in the application of natural active compounds in meat preservation. Herein, thymol was first inserted into the cavity of β-cyclodextrin (β-CD) to form a stable inclusion complex (THY/β-CD-IC). The computational investigation showed that the optimized complexation energy for THY/β-CD-IC was -12.95 kcal mol-1. It contributed to the improvement of the thermal stability of thymol in the inclusion compound. Furthermore, the functionalized nanofibers (THY/β-CD-IC-NFs) loaded with THY/β-CD-IC were successfully fabricated by electrospinning of the mixture of casein and polyethylene oxide. When dealing with protease-producing bacteria, controllable release of thymol from THY/β-CD-IC-NFs was achieved through the response of casein to the hydrolysis of bacterial protease. The application results indicated that the prepared THY/β-CD-IC-NFs had a long-term antimicrobial activity for chilled beef preservation during 7-days storage. The information from this study presents a feasible strategy for the development of natural extracts for use in meat preservation.
Collapse
Affiliation(s)
- Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Hu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Hongying Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
9
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 294] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Mbese Z, Alven S, Aderibigbe BA. Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications. Polymers (Basel) 2021; 13:4368. [PMID: 34960918 PMCID: PMC8703599 DOI: 10.3390/polym13244368] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.
Collapse
|
11
|
Fonseca LM, Bona NP, Crizel RL, Pedra NS, Stefanello FM, Lim L, Carreño NLV, Dias ARG, Zavareze EDR. Electrospun Starch Nanofibers as a Delivery Carrier for Carvacrol as Anti‐Glioma Agent. STARCH-STARKE 2021. [DOI: 10.1002/star.202100115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Martins Fonseca
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
- Department of Food Science University of Guelph Guelph Ontario N1G2W1 Canada
| | - Natalia Pontes Bona
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Rosane Lopes Crizel
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Nathalia Stark Pedra
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Francieli Moro Stefanello
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Loong‐Tak Lim
- Department of Food Science University of Guelph Guelph Ontario N1G2W1 Canada
| | | | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| |
Collapse
|
12
|
Croitoru AM, Karaçelebi Y, Saatcioglu E, Altan E, Ulag S, Aydoğan HK, Sahin A, Motelica L, Oprea O, Tihauan BM, Popescu RC, Savu D, Trusca R, Ficai D, Gunduz O, Ficai A. Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications. Pharmaceutics 2021; 13:pharmaceutics13070957. [PMID: 34201978 PMCID: PMC8309188 DOI: 10.3390/pharmaceutics13070957] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
The novel controlled and localized delivery of drug molecules to target tissues using an external electric stimulus makes electro-responsive drug delivery systems both feasible and desirable, as well as entailing a reduction in the side effects. Novel micro-scaffold matrices were designed based on poly(lactic acid) (PLA) and graphene oxide (GO) via electrospinning. Quercetin (Q), a natural flavonoid, was loaded into the fiber matrices in order to investigate the potential as a model drug for wound dressing applications. The physico-chemical properties, electrical triggering capacity, antimicrobial assay and biocompatibility were also investigated. The newly fabricated PLA/GO/Q scaffolds showed uniform and smooth surface morphologies, without any beads, and with diameters ranging from 1107 nm (10%PLA/0.1GO/Q) to 1243 nm (10%PLA). The in vitro release tests of Q from the scaffolds showed that Q can be released much faster (up to 8640 times) when an appropriate electric field is applied compared to traditional drug-release approaches. For instance, 10 s of electric stimulation is enough to ensure the full delivery of the loaded Q from the 10%PLA/1%GO/Q microfiber scaffold at both 10 Hz and at 50 Hz. The antimicrobial tests showed the inhibition of bacterial film growth. Certainly, these materials could be loaded with more potent agents for anti-cancer, anti-infection, and anti-osteoporotic therapies. The L929 fibroblast cells cultured on these scaffolds were distributed homogeneously on the scaffolds, and the highest viability value of 82.3% was obtained for the 10%PLA/0.5%GO/Q microfiber scaffold. Moreover, the addition of Q in the PLA/GO matrix stimulated the production of IL-6 at 24 h, which could be linked to an acute inflammatory response in the exposed fibroblast cells, as a potential effect of wound healing. As a general conclusion, these results demonstrate the possibility of developing graphene oxide-based supports for the electrically triggered delivery of biological active agents, with the delivery rate being externally controlled in order to ensure personalized release.
Collapse
Affiliation(s)
- Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Yasin Karaçelebi
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey;
| | - Elif Saatcioglu
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey; (E.S.); (E.A.)
| | - Eray Altan
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey; (E.S.); (E.A.)
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Metallurgical and Materials Engineering, Institute of Pure and Applied Sciences, Marmara University, 34722 Istanbul, Turkey;
| | - Huseyin Kıvanc Aydoğan
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey;
| | - Ali Sahin
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34722 Istanbul, Turkey;
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Ovidiu Oprea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Bianca-Maria Tihauan
- Research and Development Department, The National Institute for Research & Development in Food Bioresources, Dinu Vintila St. 6, 021102 Bucharest, Romania; or
- Research Institute of the University of Bucharest—ICUB, Spl. Independentei 91-95, 50567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugareni, Romania
| | - Roxana-Cristina Popescu
- “Horia Hulubei” National Institute for Research & Development in Physics and Nuclear Engineering, Reactorului, No. 30, 077125 Magurele, Romania; (R.-C.P.); (D.S.)
| | - Diana Savu
- “Horia Hulubei” National Institute for Research & Development in Physics and Nuclear Engineering, Reactorului, No. 30, 077125 Magurele, Romania; (R.-C.P.); (D.S.)
| | - Roxana Trusca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey; (E.S.); (E.A.)
- Correspondence: (O.G.); (A.F.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
- Correspondence: (O.G.); (A.F.)
| |
Collapse
|