1
|
Zhao B, Yang G, Xie Z, Zhang N, Xia J, Liu X, Wang D, Wang P, Tang L. Efficient degradation of venlafaxine using intimately coupled high-active crystal facets exposed TiO 2 and biodegradation system: Kinetic studies, biofilm stress behavior and transformation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121159. [PMID: 38759549 DOI: 10.1016/j.jenvman.2024.121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Intimately coupled photocatalysis and biodegradation (ICPB) system is a potential wastewater treatment technology, of which TiO2-based ICPB system has been widely studied. There are many ways to improve the degradation efficiency of the ICPB process, but no crystal facet engineering method has been reported yet. In this work, a new ICPB system coated with NaF-TiO2 exposing high energy facets was designed to degrade biorecalcitrant psychotropic drug - venlafaxine (VNF). Initially, the TiO2 crystal surface was modified with NaF, resulting in the formation of NaF-TiO2 with a 14.4% increase in the exposure ratio of (001). The contribution rate of ·OH was increased by 9.5%, and the contribution rate of h+ was increased by 33.2%. Next, NaF-TiO2 was loaded onto the surface of the sponge carrier, and then the ICPB system was constructed after about 15 days of biofilm formation. After the ICPB system was acclimated with VNF, the removal rate of COD decreased significantly (the lowest was 62.7%), but that of ammonia nitrogen remained at 50.5 ± 6.0% and the extracellular polymeric substance (EPS) secretion increased by 84.1 mg/g VSS. According to the high throughput results, at the phylum level, Proteobacteria and Chloroflexi together maintain the nitrogen removal capability and structural stability of the ICPB system. The relative abundance of Bacteroidota was significantly increased by 14.2%, suggesting that there may be some correlation between Bacteroidota and certain metabolites of the anti-depressant active ingredients. At the genus level, the Thauera (3.1%∼11.5%) is the major bacterial group that secretes EPS, protecting biofilm against external influences. Most of the changes in microorganisms are consistent with the decontamination properties and macroscopic appearance of EPS in the ICPB system. Finally, the degradation efficiency of ICPB system for VNF was investigated (92.7 ± 3.8%) and it was mostly through hydroxylation and demethylation pathways, with more small molecular products detected, providing the basis for biological assimilation of VNF. Collectively, the NaF-TiO2 based ICPB system would be lucrative for the future degradation of venlafaxine.
Collapse
Affiliation(s)
- Bo Zhao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| | - Zhouyun Xie
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Ni Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Jingfen Xia
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China.
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Peier Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Li Tang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| |
Collapse
|
2
|
Xu T, Tang X, Qiu M, Lv X, Shi Y, Zhou Y, Xie Y, Naushad M, Lam SS, Ng HS, Sonne C, Ge S. Degradation of levofloxacin from antibiotic wastewater by pulse electrochemical oxidation with BDD electrode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118718. [PMID: 37541001 DOI: 10.1016/j.jenvman.2023.118718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Antibiotic-containing wastewater is a typical biochemical refractory organic wastewater and general treatment methods cannot effectively and quickly degrade the antibiotic molecules. In this study, a novel boron-doped diamond (BDD) pulse electrochemical oxidation (PEO) technology was proposed for the efficient removal of levofloxacin (LFXN) from wastewater. The effects of current density (j), initial pH (pH0), frequency (f), electrolyte types and initial concentration (c0(LFXN)) on the degradation of LFXN were systematically investigated. The degradation kinetics under four different processes have also been studied. The possible degradation mechanism of LFXN was proposed by Density functional theory calculation and analysis of degradation intermediates. The results showed that under the optimal parameters, the COD removal efficiency (η(COD)) was 94.4% and the energy consumption (EEC) was 81.43 kWh·m-3 at t = 120 min. The degradation of LFXN at pH = 2.8/c(H2O2) followed pseudo-first-order kinetics. The apparent rate constant was 1.33 × 10-2 min-1, which was much higher than other processes. The degradation rate of LFXN was as follows: pH = 2.8/c(H2O2) > pH = 2.8 > pH = 7/c(H2O2) > pH = 7. Ten aromatic intermediates were formed during the degradation of LFXN, which were further degraded to F-, NH4+, NO3-, CO2 and H2O. This study provides a promising approach for efficiently treating LFXN antibiotic wastewater by pulsed electrochemical oxidation with a BDD electrode without adding H2O2.
Collapse
Affiliation(s)
- Tao Xu
- College of Science, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiting Tang
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meiting Qiu
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoliu Lv
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Shi
- Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yihui Zhou
- College of Science, Central South University of Forestry and Technology, Changsha, 410004, China; Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China.
| | - Yanfei Xie
- People's Hospital of Ningxiang City, Ningxiang, Hunan, 410600, China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Shengbo Ge
- Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China.
| |
Collapse
|