1
|
Tan J, Zhang Y. Thermal Conductive Polymer Composites: Recent Progress and Applications. Molecules 2024; 29:3572. [PMID: 39124984 PMCID: PMC11313829 DOI: 10.3390/molecules29153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
As microelectronics technology advances towards miniaturization and higher integration, the imperative for developing high-performance thermal management materials has escalated. Thermal conductive polymer composites (TCPCs), which leverage the benefits of polymer matrices and the unique effects of nano-enhancers, are gaining focus as solutions to overheating due to their low density, ease of processing, and cost-effectiveness. However, these materials often face challenges such as thermal conductivities that are lower than expected, limiting their application in high-performance electronic devices. Despite these issues, TCPCs continue to demonstrate broad potential across various industrial sectors. This review comprehensively presents the progress in this field, detailing the mechanisms of thermal conductivity (TC) in these composites and discussing factors that influence thermal performance, such as the intrinsic properties of polymers, interfacial thermal resistance, and the thermal properties of fillers. Additionally, it categorizes and summarizes methods to enhance the TC of polymer composites. The review also highlights the applications of these materials in emerging areas such as flexible electronic devices, personal thermal management, and aerospace. Ultimately, by analyzing current challenges and opportunities, this review provides clear directions for future research and development.
Collapse
Affiliation(s)
| | - Yuan Zhang
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
2
|
Virumbrales C, Hernández-Ruiz R, Trigo-López M, Vallejos S, García JM. Sensory Polymers: Trends, Challenges, and Prospects Ahead. SENSORS (BASEL, SWITZERLAND) 2024; 24:3852. [PMID: 38931634 PMCID: PMC11207698 DOI: 10.3390/s24123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
In recent years, sensory polymers have evolved significantly, emerging as versatile and cost-effective materials valued for their flexibility and lightweight nature. These polymers have transformed into sophisticated, active systems capable of precise detection and interaction, driving innovation across various domains, including smart materials, biomedical diagnostics, environmental monitoring, and industrial safety. Their unique responsiveness to specific stimuli has sparked considerable interest and exploration in numerous applications. However, along with these advancements, notable challenges need to be addressed. Issues such as wearable technology integration, biocompatibility, selectivity and sensitivity enhancement, stability and reliability improvement, signal processing optimization, IoT integration, and data analysis pose significant hurdles. When considered collectively, these challenges present formidable barriers to the commercial viability of sensory polymer-based technologies. Addressing these challenges requires a multifaceted approach encompassing technological innovation, regulatory compliance, market analysis, and commercialization strategies. Successfully navigating these complexities is essential for unlocking the full potential of sensory polymers and ensuring their widespread adoption and impact across industries, while also providing guidance to the scientific community to focus their research on the challenges of polymeric sensors and to understand the future prospects where research efforts need to be directed.
Collapse
Affiliation(s)
- Cintia Virumbrales
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain; (M.T.-L.); (S.V.); (J.M.G.)
| | - Raquel Hernández-Ruiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain; (M.T.-L.); (S.V.); (J.M.G.)
| | | | | | | |
Collapse
|
3
|
Amrutha B, Anand Prabu A, Pathak M. Enhancing piezoelectric effect of PVDF electrospun fiber through NiO nanoparticles for wearable applications. Heliyon 2024; 10:e29192. [PMID: 38601609 PMCID: PMC11004416 DOI: 10.1016/j.heliyon.2024.e29192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Flexible electrospun fiber-based piezoelectric nanogenerator (PENG) has attracted a lot of interest due to its ability of generating electrical energy from mechanical energy sources. The present work aims to improve the piezoelectric output of PENG devices based on electrospun polyvinylidene fluoride (PVDF) doped with nickel oxide nanoparticles (NiO NPs) in different concentrations (2, 4, 6, 8 and 10 wt.-%). Crystalline phase changes and β-crystalline content in electrospun fibers were evaluated using XRD and FTIR-ATR, respectively. Surface morphology and surface roughness of the electrospun fibers were observed using FE-SEM and AFM, respectively. The hydrophobic nature of the fibers was analyzed using a wettability test. PENG output voltage and short-circuit current performance of neat PVDF and PVDF doped with NiO (PN) composite electrospun fibers were calculated using a customized variable-pressure setup with an optimized force of 1.0 kgf and 1.0 Hz frequency. Neat PVDF-based PENG exhibited only 1.7 V and 0.7 μA, whereas, PVDF doped with 6 wt.-% NiO NP (PN-6) based PENG generated a high output voltage of 5.5 V and 1.83 μA current. The optimized PN-6 PENG device is demonstrated for use in wearable devices towards identifying certain body movements like tapping, wrist movement, walking and running.
Collapse
Affiliation(s)
- Bindhu Amrutha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Arun Anand Prabu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhvesh Pathak
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
4
|
Ziobro A, Jankowski-Mihułowicz P, Węglarski M, Pyt P. Investigation of Factors Affecting the Performance of Textronic UHF RFID Transponders. SENSORS (BASEL, SWITZERLAND) 2023; 23:9703. [PMID: 38139549 PMCID: PMC10747349 DOI: 10.3390/s23249703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
The aim of this paper is to demonstrate progress in textronic UHF RFID transponder (RFIDtex tag) technology. The fundamental idea behind the RFIDtex tag design involves galvanic separation between circuits of the sewn antenna and the chip, which are electromagnetically coupled through a system of inductive loops. To advance the development of this concept, it is crucial to detect factors affecting the performance of the transponders. To achieve this goal, a mathematical model of the textronic UHF RFID transponder was developed. It involves relationships that describe the impedance of each element, the mutual inductance of the loops, and the chip voltage, and it enables the exploration of the influence of these variables on general parameters such as impedance matching and read range. Various analytical and numerical approaches were considered to obtain the value of the mutual inductance of the loops. The dimensions and geometry of the antenna, as well as the matching circuit in the microelectronic module, were taken into account. Based on the mathematical model, it was determined that mutual inductance strongly affects the chip voltage for frequencies higher than 800 MHz. The calculations from the mathematical model were compared with numerical simulations. Experimental studies were also conducted to investigate how the transponder performance is affected by either the distance between the centers of the loops or the conductivity of the threads used to embroider the antenna. The measurement results allowed us to conclude that even small imperfections in the manufacturing of the transponder, which slightly increase the vertical or horizontal distance between the centers of the loops, cause a dramatic decrease in the mutual inductance and coupling coefficient, significantly impacting the transponder's performance.
Collapse
Affiliation(s)
- Anna Ziobro
- Doctoral School of the Rzeszów University of Technology, 35-959 Rzeszów, Poland
| | - Piotr Jankowski-Mihułowicz
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszów, Poland;
| | - Mariusz Węglarski
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszów, Poland;
| | - Patryk Pyt
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszów, Poland;
| |
Collapse
|
5
|
Li S, Li H, Lu Y, Zhou M, Jiang S, Du X, Guo C. Advanced Textile-Based Wearable Biosensors for Healthcare Monitoring. BIOSENSORS 2023; 13:909. [PMID: 37887102 PMCID: PMC10605256 DOI: 10.3390/bios13100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
With the innovation of wearable technology and the rapid development of biosensors, wearable biosensors based on flexible textile materials have become a hot topic. Such textile-based wearable biosensors promote the development of health monitoring, motion detection and medical management, and they have become an important support tool for human healthcare monitoring. Textile-based wearable biosensors not only non-invasively monitor various physiological indicators of the human body in real time, but they also provide accurate feedback of individual health information. This review examines the recent research progress of fabric-based wearable biosensors. Moreover, materials, detection principles and fabrication methods for textile-based wearable biosensors are introduced. In addition, the applications of biosensors in monitoring vital signs and detecting body fluids are also presented. Finally, we also discuss several challenges faced by textile-based wearable biosensors and the direction of future development.
Collapse
Affiliation(s)
- Sheng Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
| | - Huan Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Yongcai Lu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Minhao Zhou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Sai Jiang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Xiaosong Du
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Chang Guo
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| |
Collapse
|
6
|
Maestri G, Ferreira LB, Bachmann P, Paim AAM, Merlini C, Steffens F. Recent advances in piezoelectric textile materials: A brief literature review. JOURNAL OF ENGINEERED FIBERS AND FABRICS 2023; 18. [DOI: 10.1177/15589250231151242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Smart textiles (ST) can be defined as materials capable of detecting an external stimulus, responding, and adapting its behavior according to the stimulus obtained. The field of study and development of these materials is extensive, and ST can be seen in areas such as health, transport, security, civil construction, and sports. Piezoelectric textiles are part of the ST category and are characterized due the ability to generate electrical energy from mechanical stimulus, and vice versa. Therefore, the main objective of this review is to present the current research on piezoelectric ST. In addition, the study highlights the process of obtaining materials with piezoelectric properties and the challenges and limitations, seeking to understand the contribution of the development of these materials in the field of wearable electronic devices. Thus, the main challenge in developing piezoelectric textiles is in the ability to supply energy to electronic devices to be applied in various fields such as motion detection, acoustics, impact absorption, among others. Moreover, piezoelectric ST is remarkably promising for the development of wearable electronic textiles (e-textiles) that consequently impact the creation of new functional materials that enable renewable sources to offer a positive contribution in the daily society.
Collapse
Affiliation(s)
- Gabriela Maestri
- Textile Engineering Postgraduate Program (PGETEX), Federal University of Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Ludimilla B Ferreira
- Textile Engineering Postgraduate Program (PGETEX), Federal University of Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Pedro Bachmann
- Undergraduate Degree in Textile Engineering, Federal University of Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Ana AM Paim
- Undergraduate Degree in Textile Engineering, Federal University of Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Claudia Merlini
- Special Coordination of Materials Engineering, Federal University of Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Fernanda Steffens
- Textile Engineering Postgraduate Program (PGETEX), Federal University of Santa Catarina, Blumenau, Santa Catarina, Brazil
| |
Collapse
|