1
|
Sun X, Jiang X, Wang Z, Li Y, Ren J, Zhong K, Li X, Tang L, Li J. Fluorescent probe for imaging N 2H 4 in plants, food, and living cells and for quantitative detection of N 2H 4 in soil and water using a smartphone. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135701. [PMID: 39217942 DOI: 10.1016/j.jhazmat.2024.135701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Hydrazine is volatile and highly toxic, causing severe harm to water, soil, air, and organisms. Therefore, real-time detection and long-term monitoring of hydrazine are crucial for environmental protection and human health. Herein, an "OFF-ON" fluorescent probe 5-((10-ethyl-2-methoxy-10 H-phenothiazin-3-yl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (MPD) for hydrazine detection through a nucleophilic addition reaction was developed. MPD could exclusively identify hydrazine through colorimetric and fluorescent dual-channel responses within 30 s, which also demonstrated high sensitivity (detection limit, 12 nM) and a wide pH range (6 -12). The sensing mechanism of MPD was confirmed using theoretical calculations, where fluorescence was emitted following the recognition of hydrazine because of the disappearance of the photoinduced electron transfer (PET) process. Using a smartphone, MPD enabled the quantitative detection of hydrazine in real water samples and sandy soil. Notably, in the process of detecting hydrazine in actual water samples, the establishment of analytical methods and the completion of rapid quantitative detection only required a smartphone and built-in apps. Additionally, we showed that MPD could recognize hydrazine in various environmental samples, including plants, food, hydrazine vapors, and cells. We believe that the fluorescent probe MPD developed in this study and the established smartphone visualization platform will provide a convenient and effective tool for detecting hydrazine in environmental monitoring, food safety assessment, biological system safety, and other fields.
Collapse
Affiliation(s)
- Xiaofei Sun
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, PR China
| | - Xin Jiang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Zengdong Wang
- Shandong Anyuan Marine Breeding Co., Ltd., Yantai 265617, PR China
| | - Yang Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Jiashu Ren
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Keli Zhong
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Xuepeng Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Lijun Tang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| | - Jianrong Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
2
|
Li D, Dong H, Li Z, Wang H, Sun J, Huang J, Li P, Zhou S, Zhai S, Zhao M, Sun X, Guo Y. Novel cross-linkable fluorescent probe with oriented antibody to enhance lateral immunoassay strip for the detection of acetamiprid. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134935. [PMID: 38905980 DOI: 10.1016/j.jhazmat.2024.134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Time-resolved fluorescent lateral immunoassay strip (TRFLIS) is a reliable and rapid method for detecting acetamiprid. However, its sensitivity is often affected by the structural patterns and stability of the fluorescent probe. Researchers have shown significant interests in using goat anti-mouse IgG (GaMIgG) which is indirectly bound to time-resolved fluorescent microsphere (TRFM) and antibody. This allowed for oriented modification of the antibody. However, the stability of fluorescent probe in this binding mode remained unexplored. Herein, 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride was innovatively used as a cross-linking agent to enhance the binding of antibody to GaMIgG, which improved the stability of the fluorescent probe. Under optimal working conditions, this strategy exhibited a wide linear response range of 5-700 ng/mL. Its limit of detection (LOD) was 0.62 ng/mL, the visual LOD was 5 ng/mL, and the limit of quantification (LOQ) of 2.06 ng/mL. Additionally, under tomato matrix, leek matrix and Chinese cabbage matrix, the linear response ranges were 5-400, 5-300, and 5-700 ng/mL, with LODs of 0.16, 0.60, and 0.41 ng/mL, with LOQs of 0.53, 2.01 and 1.37 ng/mL, respectively. In conclusion, this strategy effectively reduced the dosage of acetamiprid antibody compared with TRFM directly linking acetamiprid antibody, and greatly increased the sensitivity of TRFLIS. Meanwhile, it demonstrated outstanding specificity and accuracy in acetamiprid detection and had been successfully applied to vegetable samples. This method enables rapid and accurate detection of large-volume samples by combining qualitative and quantitative methods. As such, it has great potential in the development of low-cost and high-performance immunochromatographic platforms.
Collapse
Affiliation(s)
- Donghan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haowei Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhengtao Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Peisen Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Shuxian Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Shengxi Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mingxin Zhao
- Institute of Fruit and Floriculture of Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
3
|
Bakirov A, Kopishev E, Kadyrzhan K, Donbaeva E, Zhaxybayeva A, Duisembiyev M, Suyundikova F, Suleimenov I. The Method of Direct and Reverse Phase Portraits as a Tool for Systematizing the Results of Studies of Phase Transitions in Solutions of Thermosensitive Polymers. Gels 2024; 10:395. [PMID: 38920941 PMCID: PMC11203281 DOI: 10.3390/gels10060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
It is shown that a more than significant amount of experimental data obtained in the field of studying systems based on thermosensitive hydrophilic polymers and reflected in the literature over the past decades makes the issue of their systematization and classification relevant. This, in turn, makes relevant the question of choosing the appropriate classification criteria. It is shown that the basic classification feature can be the number of phase transition stages, which can vary from one to four or more depending on the nature of the temperature-sensitive system. In this work, the method of inverse phase portraits is proposed for the first time. It was intended, among other things, to identify the number of phase transition stages. Moreover, the accuracy of this method significantly exceeds the accuracy of the previously used method of direct phase portraits since, for the first time, the operation of numerical differentiation is replaced by the operation of numerical integration. A specific example of the application of the proposed method for the analysis of a previously studied temperature-sensitive system is presented. It is shown that this method also allows for a quantitative comparison between the results obtained by the differential calorimetry method and the turbidimetry method. Issues related to increasing the resolution of the method of direct phase portraits are discussed.
Collapse
Affiliation(s)
- Akhat Bakirov
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, Almaty 050040, Kazakhstan;
- Department of Telecommunication Engineering, Institute of Communications and Space Engineering, Gumarbek Daukeev Almaty University of Power Engineering and Communications, Almaty 050040, Kazakhstan;
| | - Eldar Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Kaisarali Kadyrzhan
- Department of Telecommunication Engineering, Institute of Communications and Space Engineering, Gumarbek Daukeev Almaty University of Power Engineering and Communications, Almaty 050040, Kazakhstan;
| | - Elvira Donbaeva
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Aigerim Zhaxybayeva
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Marat Duisembiyev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Faiziya Suyundikova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Ibragim Suleimenov
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
| |
Collapse
|
4
|
Najihah AZ, Hassan MZ, Ismail Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int J Biol Macromol 2024; 271:132411. [PMID: 38821798 DOI: 10.1016/j.ijbiomac.2024.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The tunable properties of hydrogels have led to their widespread use in various biomedical applications such as wound treatment, drug delivery, contact lenses, tissue engineering and 3D bioprinting. Among these applications, natural polysaccharide-based hydrogels, which are fabricated from materials like agarose, alginate, chitosan, hyaluronic acid, cellulose, pectin and chondroitin sulfate, stand out as preferred choices due to their biocompatibility and advantageous fabrication characteristics. Despite the inherent biocompatibility, polysaccharide-based hydrogels on their own tend to be weak in physiochemical and mechanical properties. Therefore, further reinforcement in the hydrogel is necessary to enhance its suitability for specific applications, ensuring optimal performance in diverse settings. Integrating nanomaterials into hydrogels has proven effective in improving the overall network and performance of the hydrogel. This approach also addresses the limitations associated with pure hydrogels. Next, an overview of recent trends in the fabrication and applications of hydrogels was presented. The characterization of hydrogels was further discussed, focusing specifically on the reinforcement achieved with various hydrogel materials used so far. Finally, a few challenges associated with hydrogels by using polysaccharide-based nanomaterial were also presented.
Collapse
Affiliation(s)
- A Z Najihah
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohamad Zaki Hassan
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
5
|
Han J, Luo J, Wang C, Kapilevich L, Zhang XA. Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed Pharmacother 2024; 174:116570. [PMID: 38599063 DOI: 10.1016/j.biopha.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Copper is an essential trace element in the human body that is extensively distributed throughout various tissues. The appropriate level of copper is crucial to maintaining the life activities of the human body, and the excess and deficiency of copper can lead to various diseases. The copper levels in the human body are regulated by copper homeostasis, which maintains appropriate levels of copper in tissues and cells by controlling its absorption, transport, and storage. Cuproptosis is a distinct form of cell death induced by the excessive accumulation of intracellular copper. Copper homeostasis and cuproptosis has recently elicited increased attention in the realm of human health. Cuproptosis has emerged as a promising avenue for cancer therapy. Studies concerning osteoarticular diseases have elucidated the intricate interplay among copper homeostasis, cuproptosis, and the onset of osteoarticular diseases. Copper dysregulation and cuproptosis cause abnormal bone and cartilage metabolism, affecting related cells. This phenomenon assumes a critical role in the pathophysiological processes underpinning various osteoarticular diseases, with implications for inflammatory and immune responses. While early Cu-modulating agents have shown promise in clinical settings, additional research and advancements are warranted to enhance their efficacy. In this review, we summarize the effects and potential mechanisms of copper homeostasis and cuproptosis on bone and cartilage, as well as their regulatory roles in the pathological mechanism of osteoarticular diseases (e.g., osteosarcoma (OS), osteoarthritis (OA), and rheumatoid arthritis (RA)). We also discuss the clinical-application prospects of copper-targeting strategy, which may provide new ideas for the diagnosis and treatment of osteoarticular diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk State University, Tomsk 634050, Russia
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China.
| |
Collapse
|
6
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
7
|
Sun L, Jiang Y, Tan H, Liang R. Collagen and derivatives-based materials as substrates for the establishment of glioblastoma organoids. Int J Biol Macromol 2024; 254:128018. [PMID: 37967599 DOI: 10.1016/j.ijbiomac.2023.128018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Glioblastoma (GBM) is a common primary brain malignancy known for its ability to invade the brain, resistance to chemotherapy and radiotherapy, tendency to recur frequently, and unfavorable prognosis. Attempts have been undertaken to create 2D and 3D models, such as glioblastoma organoids (GBOs), to recapitulate the glioma microenvironment, explore tumor biology, and develop efficient therapies. However, these models have limitations and are unable to fully recapitulate the complex networks formed by the glioma microenvironment that promote tumor cell growth, invasion, treatment resistance, and immune escape. Therefore, it is necessary to develop advanced experimental models that could better simulate clinical physiology. Here, we review recent advances in natural biomaterials (mainly focus on collagen and its derivatives)-based GBO models, as in vitro experimental platforms to simulate GBM tumor biology and response to tested drugs. Special attention will be given to 3D models that use collagen, gelatin, further modified derivatives, and composite biomaterials (e.g., with other natural or synthetic polymers) as substrates. Application of these collagen/derivatives-constructed GBOs incorporate the physical as well as chemical characteristics of the GBM microenvironment. A perspective on future research is given in terms of current issues. Generally, natural materials based on collagen/derivatives (monomers or composites) are expected to enrich the toolbox of GBO modeling substrates and potentially help to overcome the limitations of existing models.
Collapse
Affiliation(s)
- Lu Sun
- Department of Targeting Therapy & Immunology; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuelin Jiang
- West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Su K, Li J, Guo X, Guo S, Zheng W, Tang X, Deng D, Yang H, Wong WL, Ang S, Zhang K, Wu P. 18β-Glycyrrhetinic acid derivative-based metallo-hydrogels with highly selective and sensitive for histidine detection. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
9
|
Andreazza R, Morales A, Pieniz S, Labidi J. Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers (Basel) 2023; 15:polym15041026. [PMID: 36850309 PMCID: PMC9961760 DOI: 10.3390/polym15041026] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Hydrogels have become one of the potential polymers used with great performance for many issues and can be promoted as biomaterials with highly innovative characteristics and different uses. Gelatin is obtained from collagen, a co-product of the meat industry. Thus, converting wastes such as cartilage, bones, and skins into gelatin would give them added value. Furthermore, biodegradability, non-toxicity, and easy cross-linking with other substances can promote polymers with high performance and low cost for many applications, turning them into sustainable products with high acceptance in society. Gelatin-based hydrogels have been shown to be useful for different applications with important and innovative characteristics. For instance, these hydrogels have been used for biomedical applications such as bone reconstruction or drug delivery. Furthermore, they have also shown substantial performance and important characteristics for remediation for removing pollutants from water, watercourse, and effluents. After its uses, gelatin-based hydrogels can easily biodegrade and, thus, can be sustainably used in the environment. In this study, gelatin was shown to be a potential polymer for hydrogel synthesis with highly renewable and sustainable characteristics and multiple uses.
Collapse
Affiliation(s)
- Robson Andreazza
- Chemical and Environmental Engineering Department, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 San Sebastian, Spain
- Center of Engineering, Federal University of Pelotas, Gomes Carneiro 1, Pelotas 96010-610, Brazil
| | - Amaia Morales
- Chemical and Environmental Engineering Department, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 San Sebastian, Spain
| | - Simone Pieniz
- Chemical and Environmental Engineering Department, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 San Sebastian, Spain
- Nutrition Department, Federal University of Pelotas, Gomes Carneiro 1, Pelotas 96010-610, Brazil
| | - Jalel Labidi
- Chemical and Environmental Engineering Department, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 San Sebastian, Spain
- Correspondence:
| |
Collapse
|
10
|
Duan WL, Zhang LN, Bohara R, Martin-Saldaña S, Yang F, Zhao YY, Xie Y, Bu YZ, Pandit A. Adhesive hydrogels in osteoarthritis: from design to application. Mil Med Res 2023; 10:4. [PMID: 36710340 PMCID: PMC9885614 DOI: 10.1186/s40779-022-00439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/31/2022] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of degenerative joint disease which affects 7% of the global population and more than 500 million people worldwide. One research frontier is the development of hydrogels for OA treatment, which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives. Both approaches address the big challenge: establishing stable integration of such delivery systems or implants. Adhesive hydrogels provide possible solutions to this challenge. However, few studies have described the current advances in using adhesive hydrogel for OA treatment. This review summarizes the commonly used hydrogels with their adhesion mechanisms and components. Additionally, recognizing that OA is a complex disease involving different biological mechanisms, the bioactive therapeutic strategies are also presented. By presenting the adhesive hydrogels in an interdisciplinary way, including both the fields of chemistry and biology, this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.
Collapse
Affiliation(s)
- Wang-Lin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Ning Zhang
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Sergio Martin-Saldaña
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Yang Zhao
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yong Xie
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China. .,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China.
| | - Ya-Zhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
11
|
Molecular insights on the mechanical properties of double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol 2022; 218:601-633. [PMID: 35902015 DOI: 10.1016/j.ijbiomac.2022.07.168] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Gelatin's versatile functionalization offers prospects of facile and effective crosslinking as well as combining with other materials (e.g., metal nanoparticles, carbonaceous, minerals, and polymeric materials exhibiting desired functional properties) to form hybrid materials of improved thermo-mechanical, physio-chemical and biological characteristics. Gelatin-based hydrogels (GHs) and (nano)composite hydrogels possess unique functional features that make them appropriate for a wide range of environmental, technical, and biomedical applications. The properties of GHs could be balanced by optimizing the hydrogel design. The current review explores the various crosslinking techniques of GHs, their properties, composite types, and ultimately their end-use applications. GH's ability to absorb a large volume of water within the gel network via hydrogen bonding is frequently used for water retention (e.g., agricultural additives), and absorbency towards targeted chemicals from the environment (e.g., as wound dressings for absorbing exudates and in water treatment for absorbing pollutants). GH's controllable porosity makes its way to be used to restrict access to chemicals entrapped within the gel phase (e.g., cell encapsulation), regulate the release of encapsulated cargoes within the GH (e.g., drug delivery, agrochemicals release). GH's soft mechanics closely resembling biological tissues, make its use in tissue engineering to deliver suitable mechanical signals to neighboring cells. This review discussed the GHs as potential materials for the creation of biosensors, drug delivery systems, antimicrobials, modified electrodes, water adsorbents, fertilizers and packaging systems, among many others. The future research outlooks are also highlighted.
Collapse
|
13
|
Davari N, Bakhtiary N, Khajehmohammadi M, Sarkari S, Tolabi H, Ghorbani F, Ghalandari B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers (Basel) 2022; 14:986. [PMID: 35267809 PMCID: PMC8914701 DOI: 10.3390/polym14050986] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The successful design of a hydrogel for tissue engineering requires a profound understanding of its constituents' structural and molecular properties, as well as the proper selection of components. If the engineered processes are in line with the procedures that natural materials undergo to achieve the best network structure necessary for the formation of the hydrogel with desired properties, the failure rate of tissue engineering projects will be significantly reduced. In this review, we examine the behavior of proteins as an essential and effective component of hydrogels, and describe the factors that can enhance the protein-based hydrogels' structure. Furthermore, we outline the fabrication route of protein-based hydrogels from protein microstructure and the selection of appropriate materials according to recent research to growth factors, crucial members of the protein family, and their delivery approaches. Finally, the unmet needs and current challenges in developing the ideal biomaterials for protein-based hydrogels are discussed, and emerging strategies in this area are highlighted.
Collapse
Affiliation(s)
- Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran;
| | - Negar Bakhtiary
- Burn Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115114, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd 8174848351, Iran;
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 158754413, Iran;
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 158754413, Iran
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|