1
|
Mierez J, AlTammar MJ, Alruwaili KM, Alfaraj RT. Recent advances of ultrasound applications in the oil and gas industry. ULTRASONICS SONOCHEMISTRY 2024; 103:106767. [PMID: 38266591 PMCID: PMC10818082 DOI: 10.1016/j.ultsonch.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
In the last two decades, ultrasound (US) technologies research has increasingly earned attention for applications in the oil and gas industry. Numerous laboratory and field research have proven ultrasonics as an efficient, sustainable and cost-effective technology for improving well productivity. This paper pursues the elaboration of a comprehensive review of the most recent research related to ultrasonic technologies for applications in the oil and gas industry. Statistical analysis of different functional categories and classification of the research publications were performed. Considering the research reviewed, there is a huge gap between numerical and field studies in comparison with the numerous laboratory studies, deeming it necessary to increase efforts on developing mathematical and numerical models and field-testing cases of the ultrasonic effect. A comprehensive review of the ultrasonic waves' mechanisms of action for enhanced oil recovery (EOR) and emulsification/demulsification was conducted. Despite the lack of consensus regarding the mechanisms, cavitation and thermal effects on wellbore fluid and formation rock have been widely accepted as two of the most influencing mechanisms. A compilation of the state-of-the-art research of numerical, laboratory and field studies in the last two decades was assembled. Most authors agreed that ultrasonics is a highly efficient method for EOR and emulsion treatment if the optimal conditions are identified and achieved. The development of screening criteria for the application of ultrasonic waves was recommended, as this technique and the same parameters should not be utilized for all reservoir types. Treatment with ultrasound waves has shown improvement of oil recovery efficiency rates of over 90% and viscosity reduction values over 80%. The most efficient results were observed when in combination with another conventional EOR method, where ultrasound boosts recovery efficiency. Potential new applications related to rock mechanics and additional research topics were also recommended.
Collapse
|
2
|
Agi A, Junin R, Jaafar MZ, Majid ZA, Amin NAS, Sidek MA, Yakasai F, Zaini MAA, Faizal ANM, Gbadamosi A, Sirajo L, Oseh J. Dynamic stabilization of formation fines to enhance oil recovery of a medium permeability sandstone core at reservoir conditions. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Gbadamosi A, Patil S, Kamal MS, Adewunmi AA, Yusuff AS, Agi A, Oseh J. Application of Polymers for Chemical Enhanced Oil Recovery: A Review. Polymers (Basel) 2022; 14:polym14071433. [PMID: 35406305 PMCID: PMC9003037 DOI: 10.3390/polym14071433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polymers play a significant role in enhanced oil recovery (EOR) due to their viscoelastic properties and macromolecular structure. Herein, the mechanisms of the application of polymeric materials for enhanced oil recovery are elucidated. Subsequently, the polymer types used for EOR, namely synthetic polymers and natural polymers (biopolymers), and their properties are discussed. Moreover, the numerous applications for EOR such as polymer flooding, polymer foam flooding, alkali–polymer flooding, surfactant–polymer flooding, alkali–surfactant–polymer flooding, and polymeric nanofluid flooding are appraised and evaluated. Most of the polymers exhibit pseudoplastic behavior in the presence of shear forces. The biopolymers exhibit better salt tolerance and thermal stability but are susceptible to plugging and biodegradation. As for associative synthetic polyacrylamide, several complexities are involved in unlocking its full potential. Hence, hydrolyzed polyacrylamide remains the most coveted polymer for field application of polymer floods. Finally, alkali–surfactant–polymer flooding shows good efficiency at pilot and field scales, while a recently devised polymeric nanofluid shows good potential for field application of polymer flooding for EOR.
Collapse
Affiliation(s)
- Afeez Gbadamosi
- Department of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Shirish Patil
- Department of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Correspondence:
| | - Muhammad Shahzad Kamal
- Centre for Integrative Petroleum Research, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.K.); (A.A.A.)
| | - Ahmad A. Adewunmi
- Centre for Integrative Petroleum Research, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.K.); (A.A.A.)
| | - Adeyinka S. Yusuff
- Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti PMB 5454, Nigeria;
| | - Augustine Agi
- Department of Petroleum Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Jeffrey Oseh
- Department of Petroleum Engineering, School of Engineering and Engineering Technology, Federal University of Technology, Owerri PMB 1526, Nigeria;
| |
Collapse
|