1
|
Nisha SJ, Uma G, Sathishkumar R, Prakash VSG, Isaac R, Citarasu T. Optimization and characterization of bioactive secondary metabolites from Streptomyces sp CMSTAAHL-4 isolated from mangrove sediment. BMC Microbiol 2025; 25:57. [PMID: 39891067 PMCID: PMC11786576 DOI: 10.1186/s12866-025-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Ten morphologically different actinomycetes were isolated from mangrove sediments of Manakudy, Kanyakumari District, India. The potent strain was selected based on their primary screening against Gram positive Staphylococcus aureus, Enterococcus faecalis and Gram negative Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi bacterial pathogens. The selected strain was identified as Streptomyces sp CMSTAAHL-4 by 16S rRNA sequencing. The media optimization for secondary metabolites production was performed by One-Variable at a Time and Response Surface Methodology-Central Composite Design. Minimum inhibitory concentration and minimum bacterial concentration for the extracted secondary metabolites were determined. The antioxidant potential of the secondary metabolites showed that the concentration of the metabolites increases, with the percentage of inhibition. The anti-inflammatory activity of the secondary metabolites found that maximum activity was observed at 500 µg/ml of the metabolites. Alcohols, alkenes, alkynes, alkyl halides, carboxylic acids, aliphatic esters functional groups were identified by fourier transform infrared spectroscopy, gas chromatography and mass spectrometer analysis of the secondary metabolites revealed five bioactive compounds. The X-ray diffraction analysis revealed that the secondary metabolites are amorphous. The thermogravimetric analysis showed the thermal stability of secondary metabolites. Atomic force microscopy analysis revealed specific structural characteristics of the secondary metabolites, which may be associated with their potential biological activities. CONCLUSIONS The results showed that the antibacterial, antioxidant, and anti-inflammatory chemicals present in the isolated secondary metabolites give them therapeutic properties.
Collapse
Affiliation(s)
- Selvaraj Jeraldin Nisha
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
- Department of surgery, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA
| | - Ganapathi Uma
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
| | - Ramamoorthy Sathishkumar
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
| | - Vincent Samuel Gnana Prakash
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
| | - Rimal Isaac
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Tamilnadu, Kanyakumari District, 629 190, India
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India.
- Adjunct Faculty, Department of Biochemistry, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, 602 105, India.
| |
Collapse
|
2
|
Banu MSS, Begum TN, Fathima TS, Abdul AP, Ahamed A, Arif IA, Jebastin T, Thajuddin N. Anti-Bacterial and Anti-Dermatophytic Activity of Extracellular Secondary Metabolites of Streptomyces glaucescens NTSB-37 Isolated from Lichen Parmotrema perlatum (Huds.) M. Choisy in Kolli Hills, Tamil Nadu, India. Curr Microbiol 2024; 82:54. [PMID: 39715903 DOI: 10.1007/s00284-024-04022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
Lichen-associated endophytic Actinobacteria, particularly Streptomyces species, are recognized for their production of bioactive secondary metabolites with significant pharmaceutical potential. With the escalating prevalence of diseases, Streptomyces species are being investigated for its natural source of antimicrobial compounds for new antibiotics. This study focuses on the bioactive properties of secondary metabolites from lichen-associated endophytic Actinobacteria, focusing on Streptomyces glaucescens NTSB-37 isolated form lichen, Parmotrema perlatum (Huds.) M. Choisy of Kolli hills, Tamil Nadu, India. Among 54 Actinobacterial isolates (NTSB-1 to NTSB-54) collected from various regions in Tamil Nadu, Streptomyces glaucescen NTSB-37 demonstrated notable antibacterial and anti-dermatophytic activities against multidrug-resistant bacteria and dermatophytes, including Trichomonas rubrum and Microsporum canis. The morphological and molecular (16S rRNA gene sequencing) characterization confirmed its identity. Secondary metabolites screening via FTIR and GC-MS revealed bioactive compounds in crude extracts and exhibited increased antibacterial activity with increasing dosage volume and notable MIC values. Partial purification was achieved through TLC and HPTLC fingerprinting. Further investigation shows Streptomyces glaucescens NTSB-37, an endophytic actinobacteria, is a prolific producer of bioactive secondary metabolites with effective antimicrobial agents amid the growing challenge of drug resistance and suggesting biotechnological applications in human health. The findings furthermore emphasize the important of exploring novel ecosystem, particularly lichens with abundant microhabitats within and in hilly regions for developing bioactive compounds with therapeutic potential.
Collapse
Affiliation(s)
- M S Shabeena Banu
- PG & Research Department of Biotechnology, Jamal Mohamed College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, 620020, India
| | - T Nargis Begum
- PG & Research Department of Biotechnology, Jamal Mohamed College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, 620020, India.
| | - T Shakena Fathima
- Department of Microbiology, National Repository of Microalgae and Cyanobacteria-Freshwater (NRMC-F) School of Life Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - A Parveez Abdul
- Department of Comprehensive Dentistry, UT Health Science at San Antonio, San Antonio, Texas, 78229, USA
| | - Anis Ahamed
- Department of Botany & Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ibrahim A Arif
- Department of Botany & Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - T Jebastin
- Deparment of Bioinformatics, Bishop Heber College, Tiruchirappalli, Tamil Nadu, 620017, India
| | - N Thajuddin
- B.S.Abdur Rahman Crescent Institute of Science & Technology, Chennai, Tamil Nadu, 600048, India
| |
Collapse
|
3
|
Abdelshafy Mohamad OA, Liu YH, Huang Y, Kuchkarova N, Dong L, Jiao JY, Fang BZ, Ma JB, Hatab S, Li WJ. Metabonomic analysis to identify exometabolome changes underlying antifungal and growth promotion mechanisms of endophytic Actinobacterium Streptomyces albidoflavus for sustainable agriculture practice. Front Microbiol 2024; 15:1439798. [PMID: 39282566 PMCID: PMC11393692 DOI: 10.3389/fmicb.2024.1439798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
In recent years, there has been an increasing focus on microbial ecology and its possible impact on agricultural production, owing to its eco-friendly nature and sustainable use. The current study employs metabolomics technologies and bioinformatics approaches to identify changes in the exometabolome of Streptomyces albidoflavus B24. This research aims to shed light on the mechanisms and metabolites responsible for the antifungal and growth promotion strategies, with potential applications in sustainable agriculture. Metabolomic analysis was conducted using Q Exactive UPLC-MS/MS. Our findings indicate that a total of 3,840 metabolites were identified, with 137 metabolites exhibiting significant differences divided into 61 up and 75 downregulated metabolites based on VIP >1, |FC| >1, and p < 0.01. The interaction of S. albidoflavus B24 monoculture with the co-culture demonstrated a stronger correlation coefficient. The Principal Component Analysis (PCA) demonstrates that PCA1 accounted for 23.36%, while PCA2 accounted for 20.28% distinction. OPLS-DA score plots indicate significant separation among different groups representing (t1) 24% as the predicted component (to1) depicts 14% as the orthogonal component. According to the findings of this comprehensive study, crude extracts from S. albidoflavus demonstrated varying abilities to impede phytopathogen growth and enhance root and shoot length in tested plants. Through untargeted metabolomics, we discovered numerous potential molecules with antagonistic activity against fungal phytopathogens among the top 10 significant metabolites with the highest absolute log2FC values. These include Tetrangulol, 4-Hydroxybenzaldehyde, and Cyclohexane. Additionally, we identified plant growth-regulating metabolites such as N-Succinyl-L-glutamate, Nicotinic acid, L-Aspartate, and Indole-3-acetamide. The KEGG pathway analysis has highlighted these compounds as potential sources of antimicrobial properties. The inhibitory effect of S. albidoflavus crude extracts on pathogen growth is primarily attributed to the presence of specific gene clusters responsible for producing cyclic peptides such as ansamycins, porphyrin, alkaloid derivatives, and neomycin. Overall, it is apparent that crude extracts from S. albidoflavus exhibited varying abilities to inhibit the growth of three phytopathogens and enhancement in both root and shoot length of tested plants. This research enhances our understanding of how secondary metabolites contribute to growth promotion and biocontrol, supporting ecosystem sustainability and resilience while boosting productivity in sustainable agriculture.
Collapse
Affiliation(s)
- Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Department of Biological, Marine Sciences and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Arish, Egypt
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
- Faculty of Organic Agriculture, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Nigora Kuchkarova
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Jin-Biao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Shaimaa Hatab
- Faculty of Organic Agriculture, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Kadaikunnan S, Vijayaragavan P, Rathi MA, Balamuralikrishnan B, Alharbi NS, Gopalakrishnan VK, Purushothaman S, Sivanesan R. Antibacterial and biofilm disruptive nonribosomal lipopeptides from Streptomyces parvulus against multidrug-resistant bacterial infections. J Infect Public Health 2024; 17:450-456. [PMID: 38262082 DOI: 10.1016/j.jiph.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND In recent years, new drugs for the treatment of various diseases, thereby the emergence of antimicrobial resistance tremendously increased because of the increased consumption rate of various drugs. However, the irrational use of antibiotics increases the microbial resistance along with that the frequency of mortality associated with infections is higher. Broad-spectrum antibiotics were effectively against various bacteria and the unrestricted application of antibiotics lead to the emergence of drug resistance. The present study was aimed to detect the antibacterial properties of lipopeptide novel drug producing Streptomyces parvulus. METHODS A lipopeptide-producing S. parvulus was isolated from the soil sample. The inhibitory effect of lipopeptide was detected against Gram-positive and Gram-negative bacteria. Bactericidal activity and minimum inhibitory concentration (MIC) were assayed. The IC50 value was analysed against ovarian and human melanoma cell lines. The experimental mouse model was infected withKlebsiella pneumoniae and treated with lipopeptide and bactericidal activity was determined. RESULTS The results indicated that the antibacterial activity of lipopeptide ranges from 13 ± 1 mm to 32 ± 2 mm against Gram-positive and Gram-negative strains. The lowest MIC value was noted as 1.5 ± 0.1 µg/mL against K. pneumoniae and the highest against E. aerogenes (7.5 ± 0.2 µg/mL). The IC50 value was considerably high for the ovarian cell lines and human melanoma cell lines (426 µg/mL and 503 µg/mL). At 25 µg/mL concentration of lipopeptide, only 16.4% inhibition was observed in the ovarian cell line whereas 20.2% inhibition was achieved at this concentration in the human melanoma cell line. Lipopeptide inhibited bacterial growth and was completely inhibited at a concentration of 20 µg/mL. Lipopeptide reduced bacterial load in experimental mice compared to control (p < 0.05). CONCLUSION Lipopeptide activity and its non-toxic nature reveal that it may serve as a lead molecule in the development of a novel drug.
Collapse
Affiliation(s)
- Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - P Vijayaragavan
- Bioprocess Engineering Division, Smykon Biotech Pvt Ltd, Nagercoil, Kanyakumari, Tamil Nadu 629201, India
| | - M A Rathi
- Department of Biochemistry and Cancer Research Centre, FASCM, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | | | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - V K Gopalakrishnan
- School of Medicine, Bule Hora University Institute of Health, Bule Hora University, Bule Hora, Ethiopia.
| | - Sumitha Purushothaman
- Bioprocess Engineering Division, Smykon Biotech Pvt Ltd, Nagercoil, Kanyakumari, Tamil Nadu 629201, India
| | - Ravikumar Sivanesan
- Department of Zoology Rajah Serfoji Govt. College (Autonomous), Tamil Nadu 613005, India
| |
Collapse
|
5
|
Ahmad MF, A. Alsayegh A, Ahmad FA, Akhtar MS, Alavudeen SS, Bantun F, Wahab S, Ahmed A, Ali M, Elbendary EY, Raposo A, Kambal N, H. Abdelrahman M. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024; 10:e25607. [PMID: 38356540 PMCID: PMC10865332 DOI: 10.1016/j.heliyon.2024.e25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gru Gram, 122103, Haryana, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Sirajudeen S. Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Awais Ahmed
- Department of Management, Shri JJT University, Rajasthan, Post code; 333010, India
| | - M. Ali
- Department of Pharmacognosy, CBS College of Pharmacy & Technology (Pt. B. D. Sharma University of Health Sciences), Chandpur, Faridabad, Haryana, 121101, India
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
6
|
Bhat MP, Nayaka S. Cave Soil Streptomyces sp. strain YC69 Antagonistic to Chilli Fungal Pathogens Exhibits In Vitro Anticancer Activity Against Human Cervical Cancer Cells. Appl Biochem Biotechnol 2023; 195:6232-6255. [PMID: 36853440 DOI: 10.1007/s12010-023-04388-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Cancer is one of the fatal diseases and has high mortality worldwide, and the major drawback with the cure is the side effects from the chemotherapeutic agents. The increased multidrug resistance among microbial pathogens is a serious threat to plant and animal health. There is an urgent need for an alternative that can battle against pathogens and can be used for cancer treatment. Presently, actinomycetes were isolated from cave soil, and the crude extract obtained from the potent isolate was analyzed with gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) to identify bioactive metabolites. The crude extract was examined for in vitro antimicrobial activity on human pathogens and antifungal activity on plant pathogens. The isolate Streptomyces sp. strain YC69 exhibited antagonistic activity and antimicrobial activity in a dose-dependent manner, with the highest inhibition in Staphylococcus aureus. GC-MS revealed many bioactive compounds, and HPTLC depicted metabolite fingerprints. The antifungal activity exhibited a delayed lag phase in growth curve assay and distorted and collapsed cells of Fusarium oxysporum in scanning electron microscopy (SEM) images. In the MTT assay, the IC50 of 41.98 µg/ml against HeLa cells was obtained with clear evidence for deformed cells and blebbing of the cell membrane. The results from the current study suggest that the crude extract from Streptomyces sp. strain YC69 contains antimicrobial metabolites that can inhibit pathogenic microbes in plants and humans. The MTT assay results conclude that further studies on purification may lead to the use of Streptomyces sp. strain YC69 as a source for anti-oncogenic compounds.
Collapse
Affiliation(s)
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India.
| |
Collapse
|
7
|
Arivuselvam R, Dera AA, Parween Ali S, Alraey Y, Saif A, Hani U, Arumugam Ramakrishnan S, Azeeze MSTA, Rajeshkumar R, Susil A, Harindranath H, Kumar BRP. Isolation, Identification, and Antibacterial Properties of Prodigiosin, a Bioactive Product Produced by a New Serratia marcescens JSSCPM1 Strain: Exploring the Biosynthetic Gene Clusters of Serratia Species for Biological Applications. Antibiotics (Basel) 2023; 12:1466. [PMID: 37760761 PMCID: PMC10526024 DOI: 10.3390/antibiotics12091466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Prodigiosin pigment has high medicinal value, so exploring this compound is a top priority. This report presents a prodigiosin bioactive compound isolated from Serratia marcescens JSSCPM1, a new strain. The purification process of this compound involves the application of different chromatographic methods, including UV-visible spectroscopy, high-performance liquid chromatography (HPLC), and liquid chromatography-mass spectrometry (LC/MS). Subsequent analysis was performed using nuclear magnetic resonance (NMR) to achieve a deeper understanding of the compound's structure. Finally, through a comprehensive review of the existing literature, the structural composition of the isolated bioactive compound was found to correspond to that of the well-known compound prodigiosin. The isolated prodigiosin compound was screened for antibacterial activity against both Gram-positive and Gram-negative bacteria. The compound inhibited the growth of Gram-negative bacterial strains compared with Gram-positive bacterial strains. It showed a maximum minimum inhibitory concentration against Escherichia coli NCIM 2065 at a 15.9 ± 0.31 μg/mL concentration. The potential binding capabilities between prodigiosin and the OmpF porin proteins (4GCS, 4GCP, and 4GCQ) were determined using in silico studies, which are generally the primary targets of different antibiotics. Comparative molecular docking analysis indicated that prodigiosin exhibits a good binding affinity toward these selected drug targets.
Collapse
Affiliation(s)
- Rajaguru Arivuselvam
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, TN, India; (R.A.); (S.A.R.)
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (A.A.D.); (S.P.A.); (Y.A.)
| | - Syed Parween Ali
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (A.A.D.); (S.P.A.); (Y.A.)
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (A.A.D.); (S.P.A.); (Y.A.)
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia;
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Sivaa Arumugam Ramakrishnan
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, TN, India; (R.A.); (S.A.R.)
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India
| | | | - Raman Rajeshkumar
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, TN, India; (R.A.); (S.A.R.)
| | - Aishwarya Susil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India (H.H.)
| | - Haritha Harindranath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India (H.H.)
| | - B. R. Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India (H.H.)
| |
Collapse
|
8
|
Punetha S, Vuppu S. The sustainable conversion of floral waste into natural snake repellent and docking studies for antiophidic activity. Toxicon 2023; 233:107254. [PMID: 37597788 DOI: 10.1016/j.toxicon.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Snakes play an important role as predators, prey, ecosystem regulators and in advancing the human economy and pharmaceutical industries by producing venom-based medications such as anti-serums and anti-venoms. On the other hand, snakebites are responsible for over 120,000 annual fatalities; due to snakebites people lose their lives and suffer from diseases such as snake envenoming, epilepsy, and symptoms such as punctures, swelling, haemorrhage, bruising, blistering, and inflammation. Moreover, there are several challenges associated with different interventions for managing snakebites. Therefore, finding a natural way of repelling snakes without harming them will save lives and decrease the disease's symptoms. Usually, snakes are exacerbated by noxious odours and shrill sounds. There are various strategies to repel snakes, including chemical, natural, and electronic repellents being the most prevalent. Chemical snake repellents such as mothballs, sulphur powder, and cayenne pepper act as a barrier; natural snake repellents produce a pungent and foul smell, while electronic repellents generate high-frequency ultrasonic waves to repel snakes. On the other hand, anti-serums are available commercially to prevent the adverse effects of snakebite, which are species-specific, expensive, have inadequate pharmacology and impaired interaction with the immune system. Similarly, there are monovalent or polyvalent anti-serums used for the production of anti-venom depending on the snake species and the number of snakebites occurred in that area, e.g., Soro antibotropicocrotalico contains specific antibodies for Pit vipers and rattlesnakes, and Antielapidico targets coral snakes. The purpose of this review is to investigate natural, effective, and inexpensive snake-repellent from Vellore Institute of Technology (VIT) floral waste, which can be mixed with natural products such as vinegar, citronella, cinnamon, garlic, cedar, and clove and allowed for bacterial degradation which will lead to the release of several gases during floral waste degradation, including ammonia, sulphur, manganese, selenium, and gallic acid due to bacterial growth like Proteus, Bacillus, Streptococcus, etc. We assumed to convert these gases into liquid form using Linde's technique which may repel snakes. Further, molecular docking studies were performed on snake venom toxins (Phospholipase A2 (PDB-1MG6), Protein Cytotoxin II (PDB-1CB9), α-Dendrotoxins (PDB-1DTX), Neurotoxin from cobra venom (PDB-1CTX) and Cardiotoxin III (PDB-2CRS). Phytocompounds of Vellore degraded floral waste from GC-MS analysis (Tetracosane, 12, Oleanen-3-yl Acetate, (3-Alpha), Eicosane-7-Hexyl, Octadecane,3-Ethyl-5(2-Ethyl Butyl), Nonadecane,4-Methyl, Hexatriacontane and Nonacosane) were used as a ligand to determine their binding affinity with venom proteins and may be assumed to be used as an antidote for snakebite. Finally, we analysed that 12-oleanen-3yl acetate,3-α (CID-45044112) a triterpenoid showing a maximum binding affinity with all snake venom proteins (-13.8k/cal) with Phospholipase A2 (PLA2), Cardiotoxin-II (-8.2k/cal), Dendrotoxin (-12.1 k/cal), Cardiotoxin-III (-8.2 kcal/mol) and alpha-Neurotoxin (-11.0 kcal/mol), which may have potential to counteract the adverse effects caused by snakebites, however, in-vitro and in-vivo studies still challenging tasks for our further analysis. Overall, we propose an innovative method for the sustainable conversion of floral waste into snake repellent, as well as molecular docking studies were performed with phytocompounds and snake venom proteins for antiophidic activity, which can be experimentally investigated further to confirm its use as anti-venom for snakebites.
Collapse
Affiliation(s)
- Swati Punetha
- Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, India
| | - Suneetha Vuppu
- Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
9
|
Math HH, Nayaka S, Rudrappa M, Kumar RS, Almansour AI, Perumal K, Kantli GB. Isolation, Characterization of Pyraclostrobin Derived from Soil Actinomycete Streptomyces sp. HSN-01 and Its Antimicrobial and Anticancer Activity. Antibiotics (Basel) 2023; 12:1211. [PMID: 37508307 PMCID: PMC10376734 DOI: 10.3390/antibiotics12071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The present study demonstrated the isolation, characterization, and antimicrobial and anticancer activity of active metabolite produced from mining-soil-derived actinomycetes. Among the 21 actinomycete isolates, the isolate HSN-01 exhibited significant antimicrobial activity in primary screening and was identified as Streptomyces sp. through 16S rRNA gene sequencing. The active metabolite was separated, purified, and confirmed through UV-Vis spectroscopy, FTIR, HR-ESI-MS, and NMR analysis and identified as pyraclostrobin. Further, the active metabolite pyraclostrobin was tested for antimicrobial and anticancer activity against the hepatocellular carcinoma (HepG2) cell line. The metabolite exhibited maximum antimicrobial potential with 17.0, 13.33, 17.66, 15.66, 14.66, and 14.0 mm of inhibition against B. cereus, S. aureus, E. coli, P. aeruginosa, S. flexneri, and C. glabrata. The active metabolite exhibited dose-dependent anticancer potential against the hepatocellular carcinoma (HepG2) cell line with the IC50 56.76 µg/mL. This study suggests that Streptomyces sp. HSN-01 is an excellent source of active secondary metabolites with various biological activities.
Collapse
Affiliation(s)
- Halaswamy Hire Math
- Post Graduate Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Sreenivasa Nayaka
- Post Graduate Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Muthuraj Rudrappa
- Post Graduate Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| | - Girish Babu Kantli
- Department of Life Sciences, PIAS, Parul University, Vadodara 391760, Gujarat, India
| |
Collapse
|
10
|
Math HH, Kumar RS, Chakraborty B, Almansour AI, Perumal K, Kantli GB, Nayaka S. Antimicrobial Efficacy of 7-Hydroxyflavone Derived from Amycolatopsis sp. HSN-02 and Its Biocontrol Potential on Cercospora Leaf Spot Disease in Tomato Plants. Antibiotics (Basel) 2023; 12:1175. [PMID: 37508271 PMCID: PMC10376496 DOI: 10.3390/antibiotics12071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The actinomycete strain HSN-02 was isolated from the soil of a mining field in the Sandur region, Bellary, Karnataka, India. According to the morphological, cultural, physiological, and biochemical characteristics and the 16S rDNA sequence analysis, the strain HSN-02 was identified as Amycolatopsis sp. The antimicrobial activity strain HSN-02 presented stable and moderate inhibitory activity against human pathogens. In pot experiments in the greenhouse, the development of Cercospora leaf spot was markedly suppressed by treatment with the purified compound from the strain HSN-02, and the control efficacy was 45.04 ± 1.30% in Septoria lycopersici-infected tomato plants. A prominent compound was obtained from the fermentation broth of the strain HSN-02 using column chromatography and HPLC. The chemical structural analyses using UV, FTIR, HR-ESI-MS, and NMR confirmed that the compound produced by the strain HSN-02 is 7-hydroxyflavone. This investigation showed the role which the actinomycete strain can play in controlling leaf spots caused by S. lycopersici to reduce treatments with chemical fungicides.
Collapse
Affiliation(s)
- Halaswamy Hire Math
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| | - Girish Babu Kantli
- Department of Life Sciences, PIAS, Parul University, Vadodara 391760, Gujarat, India
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| |
Collapse
|
11
|
Naibaho J, Pudło A, Bobak Ł, Wojdyło A, López ÁA, Pangestika LMW, Andayani SN, Korzeniowska M, Yang B. Conventional water bath heating on undried brewer's spent grain: Functionality, fatty acids, volatiles, polyphenolic and antioxidant properties. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
12
|
Syed RU, Moni SS, Nawaz M, Bin Break MK, Khalifa NE, Abdelwahab SI, Alharbi RM, Alfaisal RH, Al Basher BN, Alhaidan EM. Formulation and Evaluation of Amikacin Sulfate Loaded Dextran Nanoparticles against Human Pathogenic Bacteria. Pharmaceutics 2023; 15:pharmaceutics15041082. [PMID: 37111568 PMCID: PMC10145306 DOI: 10.3390/pharmaceutics15041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Amikacin sulfate-loaded dextran sulfate sodium nanoparticles were formulated, lyophilized (LADNP), and then analyzed. The LADNP had a −20.9 ± 8.35 mV zeta potential, PDI of 0.256, and % PDI of 67.7. The zeta average nano size of LADNP was 317.9 z. d.nm, while the dimension of an individual particle was 259.3 ± 73.52 nm, and nanoparticle conductivity in colloidal solution was 2.36 mS/cm. LADNP has distinct endothermic peaks at temperatures at 165.77 °C, according to differential scanning calorimetry (DSC). The thermogravimetric analysis (TGA) showed the weight loss of LADNP, which was observed as 95% at 210.78 °C. XRD investigation on LADNP exhibited distinct peaks at 2θ as 9.6°, 10.4°, 11.4°, 18.9°, 20.3°, 24.4°, 28.2°, 33.2°, 38.9°, and 40.4° confirming crystalline structure. The amikacin release kinetics from LADNP revealed zero order kinetics with a linear release showed zero order kinetics with 37% of drug release in 7 h and had an R2 value of 0.99. The antibacterial effect of LADNP showed broad-spectrum activity against tested human pathogenic bacteria. The preset study demonstrated that LADNP is a promising antibacterial agent.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Sivakumar S Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Nasrin E Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11115, Sudan
| | | | | | | | | | | |
Collapse
|
13
|
Spectral Analysis and Antiulcer Potential of Lactuca sativa through the Amelioration of Proinflammatory Cytokines and Apoptosis Markers. Life (Basel) 2022; 12:life12101641. [PMID: 36295076 PMCID: PMC9604980 DOI: 10.3390/life12101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to characterize the bioactive ingredients and antiulcer effects of Lactuca sativa leaves. Several bioactive chemicals were found in the cold methanolic extract of Lactuca sativa leaves after gas chromatography-mass spectrometry (GC-MS) research: 9,12-octadecadienoic acid (Z,Z)-, cyclononasiloxane, octadecamethyl-, n-hexadecanoic acid, Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl, octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester, 9-octadecenamide, (Z)-, hexadecanoic acid, stigmasterol, benzothiazole, ethyl iso-allocholate, and octacosane. Distinct fingerprint regions in GCMS indicated the existence of bioactive compounds. The leaf powder of Lactuca sativa (LPL) demonstrated substantial antiulcer properties at 400 mg/kg, which was almost equivalent to the standard drug at 20 mg/kg. The cytokine network was efficiently regulated by reducing the production of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α. The levels of caspase-3 and caspase-9 were also considerably lowered at p < 0.05 significant level.
Collapse
|
14
|
Nazari MT, Machado BS, Marchezi G, Crestani L, Ferrari V, Colla LM, Piccin JS. Use of soil actinomycetes for pharmaceutical, food, agricultural, and environmental purposes. 3 Biotech 2022; 12:232. [PMID: 35996673 PMCID: PMC9391553 DOI: 10.1007/s13205-022-03307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
In this article, we reviewed the international scientific production of the last years on actinomycetes isolated from soil aiming to report recent advances in using these microorganisms for different applications. The most promising genera, isolation conditions and procedures, pH, temperature, and NaCl tolerance of these bacteria were reported. Based on the content analysis of the articles, most studies have focused on the isolation and taxonomic description of new species of actinomycetes. Regarding the applications, the antimicrobial potential (antibacterial and antifungal) prevailed among the articles, followed by the production of enzymes (cellulases and chitinases, etc.), agricultural uses (plant growth promotion and phytopathogen control), bioremediation (organic and inorganic contaminants), among others. Furthermore, a wide range of growth capacity was verified, including temperatures from 4 to 60 °C (optimum: 28 °C), pH from 3 to 13 (optimum: 7), and NaCl tolerance up to 32% (optimum: 0-1%), which evidence a great tolerance for actinomycetes cultivation. Streptomyces was the genus with the highest incidence among the soil actinomycetes and the most exploited for different uses. Besides, the interest in isolating actinomycetes from soils in extreme environments (Antarctica and deserts, for example) is growing to explore the adaptive capacities of new strains and the secondary metabolites produced by these microorganisms for different industrial interests, especially for pharmaceutical, food, agricultural, and environmental purposes.
Collapse
Affiliation(s)
- Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Bruna Strieder Machado
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Giovana Marchezi
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Larissa Crestani
- Graduate Program Chemical Engineering (PPGEQ), Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| |
Collapse
|
15
|
Bhat MP, Nayaka S, Kumar RS. A swamp forest Streptomyces sp. strain KF15 with broad spectrum antifungal activity against chilli pathogens exhibits anticancer activity on HeLa cells. Arch Microbiol 2022; 204:540. [PMID: 35927484 DOI: 10.1007/s00203-022-03147-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
During the investigation, soil actinomycetes were isolated from Kathlekanu swamp forest and the crude ethyl acetate extract from the potent isolate KF15 was analysed with GC-MS and HPTLC to identify bioactive metabolites. The crude extract was examined for in-vitro antifungal activity on pathogens of chilli; MTT cytotoxicity assay was performed against HeLa cell line to determine the anticancer potential. The isolate Streptomyces sp. strain KF15 exhibited antagonistic activity against fungal pathogens by inhibiting growth and altering growth pattern with increased antimicrobial activity in dose-dependent manner. GC-MS revealed many bioactive compounds and HPTLC depicted metabolite fingerprint. The IC50 of 99.85 µg/ml indicated the high potential of KF15 extract to prevent proliferation of HeLa cells. Therefore, the findings of this study indicate that the crude extract from Streptomyces sp. strain KF15 contains antifungal and anticancer metabolites; further study on purification could help in controlling many fungal diseases as well as cervical cancer in humans.
Collapse
Affiliation(s)
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, Karnataka, 580003, India.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Dhandapani R, Thangavelu S, Ragunathan L, Paramasivam R, Velmurugan P, Muthupandian S. Potential Bioactive Compounds from Marine Streptomyces sp. and Their In Vitro Antibiofilm and Antibacterial Activities Against Antimicrobial-Resistant Clinical Pathogens. Appl Biochem Biotechnol 2022; 194:4702-4723. [PMID: 35829903 DOI: 10.1007/s12010-022-04072-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Antimicrobial resistance issues have risen dramatically in recent years, posing a severe concern to humans worldwide. The urgent need to find novel compounds for pharmaceutical applications prompts the research of under-explored environments such as marine ecosystems. The present study was designed to discover novel secondary metabolites, and we have isolated about 30 actinomycetes from the marine soil samples collected in Thondi (Ramanathapuram, Tamil Nadu, India), where most isolates are associated with the genus Streptomyces. Out of 30, one potentially active strain (Streptomyces sp. SRMA3) was identified using primary and secondary screening methods against the drug-resistant clinical pathogens. The active metabolites extracted from the selected active isolate were subjected to partial purification and characterization using Fourier transform infrared spectrophotometer (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analysis. The minimum inhibitory concentration (MIC) value was determined for the active metabolite. Further, the partially purified active fraction was revealed for its antibacterial and antibiofilm activity against drug-resistant clinical pathogens. Light and fluorescence microscopy detected the viability and adhesion of the biofilm-forming drug-resistant pathogens. Growth curve analysis showed that the active metabolite has the potential to inhibit drug-resistant pathogens. The synergistic effect of active metabolite with commercial antibiotics also revealed that it could enhance the activity of antibiotics in antimicrobial resistance pathogens. This study shows that the isolated Streptomyces sp. SRMA3 is a potentially active strain, and the metabolite derived from this strain has a good antibacterial and antibiofilm activity against antimicrobially resistant clinical pathogens and could be used for various biotechnological applications.
Collapse
Affiliation(s)
- Ranjithkumar Dhandapani
- Medical Microbiology Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, 630008, India.,Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Sathiamoorthi Thangavelu
- Medical Microbiology Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, 630008, India.
| | - Latha Ragunathan
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Pondicherry, 607402, India
| | - Ragul Paramasivam
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative medicine, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Saravanan Muthupandian
- AMR and Nanotherapeutic Laboratory, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|