1
|
Córdoba-Lanús E, Montuenga LM, Domínguez-de-Barros A, Oliva A, Mayato D, Remírez-Sanz A, Gonzalvo F, Celli B, Zulueta JJ, Casanova C. Oxidative Damage and Telomere Length as Markers of Lung Cancer Development among Chronic Obstructive Pulmonary Disease (COPD) Smokers. Antioxidants (Basel) 2024; 13:156. [PMID: 38397754 PMCID: PMC10886051 DOI: 10.3390/antiox13020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Lung cancer (LC) constitutes an important cause of death among patients with Chronic Obstructive Pulmonary Disease (COPD). Both diseases may share pathobiological mechanisms related to oxidative damage and cellular senescence. In this study, the potential value of leucocyte telomere length, a hallmark of aging, and 8-OHdG concentrations, indicative of oxidative DNA damage, as risk biomarkers of LC was evaluated in COPD patients three years prior to LC diagnosis. Relative telomere length measured using qPCR and serum levels of 8-OHdG were determined at the baseline in 99 COPD smokers (33 with LC and 66 age-matched COPD without LC as controls). Of these, 21 COPD with LC and 42 controls had the biomarkers measured 3 years before. Single nucleotide variants (SNVs) in TERT, RTEL, and NAF1 genes were also determined. COPD cases were evaluated, which showed greater telomere length (p < 0.001) and increased serum 8-OHdG levels (p = 0.004) three years prior to LC diagnosis compared to the controls. This relationship was confirmed at the time of LC diagnosis. No significant association was found between the studied SNVs in cases vs. controls. In conclusion, this preliminary study shows that longer leucocyte telomere length and increased 8-OHdG serum levels can be useful as early biomarkers of the risk for future lung cancer development among COPD patients.
Collapse
Affiliation(s)
- Elizabeth Córdoba-Lanús
- Department of Internal Medicine, Dermatology and Psychiatry, University of La Laguna, 38296 San Cristóbal de La Laguna, Spain;
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), 38029 San Cristóbal de La Laguna, Spain; (A.D.-d.-B.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis M. Montuenga
- Department of Pathology, Anatomy and Physiology, School of Medicine and Sciences, University of Navarra, 31008 Pamplona, Spain;
- CIMA—Centro de Investigación Médica Aplicada, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Angélica Domínguez-de-Barros
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), 38029 San Cristóbal de La Laguna, Spain; (A.D.-d.-B.); (A.O.)
| | - Alexis Oliva
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), 38029 San Cristóbal de La Laguna, Spain; (A.D.-d.-B.); (A.O.)
- Department of Pharmaceutical Technology, University of La Laguna, 38296 San Cristóbal de La Laguna, Spain
| | - Delia Mayato
- Pulmonary Division, Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
| | - Ana Remírez-Sanz
- CIMA—Centro de Investigación Médica Aplicada, University of Navarra, 31008 Pamplona, Spain;
| | - Francisca Gonzalvo
- Pulmonary Division, Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
| | - Bartolomé Celli
- Pulmonary Critical Care Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Javier J. Zulueta
- Pulmonary, Critical Care and Sleep Medicine Division, Mount Sinai Morningside Hospital, Icahn School of Medicine, New York, NY 10025, USA;
| | - Ciro Casanova
- Department of Internal Medicine, Dermatology and Psychiatry, University of La Laguna, 38296 San Cristóbal de La Laguna, Spain;
- Pulmonary Division, Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Córdoba-Lanús E, Domínguez de-Barros A, Oliva A, Mayato D, Gonzalvo F, Remírez-Sanz A, Zulueta JJ, Celli B, Casanova C. Circulating miR-206 and miR-1246 as Markers in the Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:12437. [PMID: 37569812 PMCID: PMC10418760 DOI: 10.3390/ijms241512437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer (LC) is the most common cause of cancer death, with 75% of cases being diagnosed in late stages. This study aimed to determine potential miRNAs as biomarkers for the early detection of LC in chronic obstructive pulmonary disease (COPD) cases. Ninety-nine patients were included, with registered clinical and lung function parameters followed for 6 years. miRNAs were determined in 16 serum samples from COPD patients (four with LC and four controls) by next generation sequencing (NGS) at LC diagnosis and 3 years before. The validation by qPCR was performed in 33 COPD-LC patients and 66 controls at the two time points. Over 170 miRNAs (≥10 TPM) were identified; among these, miR-224-5p, miR-206, miR-194-5p, and miR-1246 were significantly dysregulated (p < 0.001) in COPD-LC 3 years before LC diagnosis when compared to the controls. The validation showed that miR-1246 and miR-206 were differentially expressed in COPD patients who developed LC three years before (p = 0.035 and p = 0.028, respectively). The in silico enrichment analysis showed miR-1246 and miR-206 to be linked to gene mediators in various signaling pathways related to cancer. Our study demonstrated that miR-1246 and miR-206 have potential value as non-invasive biomarkers of early LC detection in COPD patients who could benefit from screening programs.
Collapse
Affiliation(s)
- Elizabeth Córdoba-Lanús
- Department of Internal Medicine, Dermatology and Psychiatry, Universidad de La Laguna, 38071 San Cristóbal de La Laguna, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 San Cristóbal de La Laguna, Spain; (A.D.d.-B.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angélica Domínguez de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 San Cristóbal de La Laguna, Spain; (A.D.d.-B.); (A.O.)
| | - Alexis Oliva
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 San Cristóbal de La Laguna, Spain; (A.D.d.-B.); (A.O.)
- Department of Pharmaceutical Technology, Universidad de La Laguna, 38206 Santa Cruz de Tenerife, Spain
| | - Delia Mayato
- Pulmonary Department-Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
| | - Francisca Gonzalvo
- Pulmonary Department-Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
| | - Ana Remírez-Sanz
- CIMA, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Javier J. Zulueta
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain;
- Pulmonary, Critical Care and Sleep Medicine Division, Mount Sinai Morningside Hospital, New York, NY 10029, USA
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Bartolomé Celli
- Pulmonary Critical Care Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ciro Casanova
- Department of Internal Medicine, Dermatology and Psychiatry, Universidad de La Laguna, 38071 San Cristóbal de La Laguna, Spain;
- Pulmonary Department-Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Immunotherapy with Monoclonal Antibodies in Lung Cancer of Mice: Oxidative Stress and Other Biological Events. Cancers (Basel) 2019; 11:cancers11091301. [PMID: 31487876 PMCID: PMC6770046 DOI: 10.3390/cancers11091301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Lung cancer (LC) is a major leading cause of death worldwide. Immunomodulators that target several immune mechanisms have proven to reduce tumor burden in experimental models through induction of the immune microenvironment. We hypothesized that other biological mechanisms may also favor tumor burden reduction in lung cancer-bearing mice treated with immunomodulators. Methods: Tumor weight, area, T cells and tumor growth (immunohistochemistry), oxidative stress, apoptosis, autophagy, and signaling (NF-κB and sirtuin-1) markers were analyzed (immunoblotting) in subcutaneous tumor of BALB/c mice injected with LP07 adenocarcinoma cells treated with monoclonal antibodies (CD-137, CTLA-4, PD-1, and CD-19, N = 9/group) and non-treated control animals. Results: Compared to non-treated cancer mice, in tumors of monoclonal-treated animals, tumor area and weight and ki-67 were significantly reduced, while T cell counts, oxidative stress, apoptosis, autophagy, activated p65, and sirtuin-1 markers were increased. Conclusions: Immunomodulators elicited a reduction in tumor burden (reduced tumor size and weight) through decreased tumor proliferation and increased oxidative stress, apoptosis, autophagy, and signaling markers, which may have interfered with the immune profile of the tumor microenvironment. Future research should be devoted to the elucidation of the specific contribution of each biological mechanism to the reduced tumor burden.
Collapse
|
4
|
Salazar-Degracia A, Granado-Martínez P, Millán-Sánchez A, Tang J, Pons-Carreto A, Barreiro E. Reduced lung cancer burden by selective immunomodulators elicits improvements in muscle proteolysis and strength in cachectic mice. J Cell Physiol 2019; 234:18041-18052. [PMID: 30851071 DOI: 10.1002/jcp.28437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Identification of to what extent tumor burden influences muscle mass independently of specific treatments for cancer-cachexia remains to be elucidated. We hypothesized that reduced tumor burden by selective treatment of tumor with immunomodulators may exert beneficial effects on muscle wasting and function in mice. Body and muscle weight, grip strength, physical activity, muscle morphometry, apoptotic nuclei, troponin-I systemic levels, interleukin-6, proteolytic markers, and tyrosine release, and apoptosis markers were determined in diaphragm and gastrocnemius muscles of lung cancer (LP07 adenocarcinoma cells) mice (BALB/c) treated with monoclonal antibodies (mAbs), against immune check-points and pathways (CD-137, cytotoxic T-lymphocyte associated protein-4, programed cell death-1, and CD-19; N = 10/group). Nontreated lung cancer cachectic mice were the controls. T and B cell numbers and macrophages were counted in tumors of both mouse groups. Compared to nontreated cachectic mice, in the mAbs-treated animals, T cells increased, no differences in B cells or macrophages, the variables final body weight, body weight and grip strength gains significantly improved. In diaphragm and gastrocnemius of mAbs-treated cachectic mice, number of apoptotic nuclei, tyrosine release, proteolysis, and apoptosis markers significantly decreased compared to nontreated cachectic mice. Systemic levels of troponin-I significantly decreased in treated cachectic mice compared to nontreated animals. We conclude that reduced tumor burden as a result of selective treatment of the lung cancer cells with immunomodulators elicits per se beneficial effects on muscle mass loss through attenuation of several biological mechanisms that lead to increased protein breakdown and apoptosis, which translated into significant improvements in limb muscle strength but not in physical activity parameters.
Collapse
Affiliation(s)
- Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paula Granado-Martínez
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aïna Millán-Sánchez
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jun Tang
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Pons-Carreto
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Salazar-Degracia A, Busquets S, Argilés JM, Bargalló-Gispert N, López-Soriano FJ, Barreiro E. Effects of the beta 2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia. Biochimie 2018; 149:79-91. [PMID: 29654866 DOI: 10.1016/j.biochi.2018.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Beta-adrenoceptors attenuate muscle wasting. We hypothesized that specific muscle atrophy signaling pathways and altered metabolism may be attenuated in cancer cachectic animals receiving treatment with the beta2 agonist formoterol. In diaphragm and gastrocnemius of tumor-bearing rats (intraperitoneal inoculum, 108 AH-130 Yoshida ascites hepatoma cells, 7-day study period) with and without treatment with formoterol (0.3 mg/kg body weight/day/7days, subcutaneous), atrophy signaling pathways (NF-κB, MAPK, FoxO), proteolytic markers (ligases, proteasome, ubiquitination), autophagy markers (p62, beclin-1, LC3), myostatin, apoptosis, muscle metabolism markers, and muscle structure features were analyzed (immunoblotting, immunohistochemistry). In diaphragm and gastrocnemius of cancer cachectic rats, fiber sizes were reduced, levels of structural alterations, atrophy signaling pathways, proteasome content, protein ubiquitination, autophagy, and myostatin were increased, while those of regenerative and metabolic markers (myoD, mTOR, AKT, and PGC-1alpha) were decreased. Formoterol treatment attenuated such alterations in both muscles. Muscle wasting in this rat model of cancer-induced cachexia was characterized by induction of significant structural alterations, atrophy signaling pathways, proteasome activity, apoptotic and autophagy markers, and myostatin, along with a significant decline in the expression of muscle regenerative and metabolic markers. Treatment of the cachectic rats with formoterol partly attenuated the structural alterations and atrophy signaling, while improving other molecular perturbations similarly in both respiratory and limb muscles. The results reported in this study have relevant therapeutic implications as they showed beneficial effects of the beta2 agonist formoterol in the cachectic muscles through several key biological pathways.
Collapse
Affiliation(s)
- Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Núria Bargalló-Gispert
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
| |
Collapse
|
6
|
Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med 2018; 142:321-346. [PMID: 29355391 DOI: 10.5858/arpa.2017-0388-cp] [Citation(s) in RCA: 540] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONTEXT - In 2013, an evidence-based guideline was published by the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology to set standards for the molecular analysis of lung cancers to guide treatment decisions with targeted inhibitors. New evidence has prompted an evaluation of additional laboratory technologies, targetable genes, patient populations, and tumor types for testing. OBJECTIVE - To systematically review and update the 2013 guideline to affirm its validity; to assess the evidence of new genetic discoveries, technologies, and therapies; and to issue an evidence-based update. DESIGN - The College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology convened an expert panel to develop an evidence-based guideline to help define the key questions and literature search terms, review abstracts and full articles, and draft recommendations. RESULTS - Eighteen new recommendations were drafted. The panel also updated 3 recommendations from the 2013 guideline. CONCLUSIONS - The 2013 guideline was largely reaffirmed with updated recommendations to allow testing of cytology samples, require improved assay sensitivity, and recommend against the use of immunohistochemistry for EGFR testing. Key new recommendations include ROS1 testing for all adenocarcinoma patients; the inclusion of additional genes ( ERBB2, MET, BRAF, KRAS, and RET) for laboratories that perform next-generation sequencing panels; immunohistochemistry as an alternative to fluorescence in situ hybridization for ALK and/or ROS1 testing; use of 5% sensitivity assays for EGFR T790M mutations in patients with secondary resistance to EGFR inhibitors; and the use of cell-free DNA to "rule in" targetable mutations when tissue is limited or hard to obtain.
Collapse
Affiliation(s)
- Neal I Lindeman
- From the Departments of Pathology (Drs Lindeman and Sholl) and Medicine (Dr Kwiatkowski), Brigham and Women's Hospital, Boston, Massachusetts; the Cancer Center (Dr Bernicker) and the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Cagle); the Department of Pathology, University of Colorado School of Medicine, Denver (Dr Aisner); the Diagnostic and Molecular Pathology Laboratory (Dr Arcila) and the Molecular Diagnostics Service (Dr Ladanyi), Memorial Sloan Kettering Cancer Center, New York, New York; the Department of Pathology & Medicine, Pulmonary, Critical Care and Sleep Medicine, New York, New York (Dr Beasley); the Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois (Mss Colasacco and Ventura); the Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Dacic); the Department of Medicine and Pathology, University of Colorado, Denver (Dr Hirsch); the Department of Pathology, University of Aberdeen, Aberdeen, Scotland (Dr Kerr); the Department of Molecular Pathology, Roswell Park Cancer Institute, Buffalo, New York (Dr Nowak); the Clinical and Scientific Affairs Division, Association for Molecular Pathology, Bethesda, Maryland (Dr Temple-Smolkin); the Molecular Therapeutics and Biomarkers Laboratory, Peter Maccallum Cancer Center, Melbourne, Australia (Dr Solomon); the Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands (Dr Thunnissen); the Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Center, Toronto, Ontario, Canada (Dr Tsao); Scientific Affairs, International Association for the Study of Lung Cancer, Aurora, Colorado (Dr Wynes); and the Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan (Dr Yatabe). Dr Souter is in private practice in Wellanport, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Thorac Oncol 2018; 13:323-358. [PMID: 29396253 DOI: 10.1016/j.jtho.2017.12.001] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
CONTEXT In 2013, an evidence-based guideline was published by the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology to set standards for the molecular analysis of lung cancers to guide treatment decisions with targeted inhibitors. New evidence has prompted an evaluation of additional laboratory technologies, targetable genes, patient populations, and tumor types for testing. OBJECTIVE To systematically review and update the 2013 guideline to affirm its validity; to assess the evidence of new genetic discoveries, technologies, and therapies; and to issue an evidence-based update. DESIGN The College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology convened an expert panel to develop an evidence-based guideline to help define the key questions and literature search terms, review abstracts and full articles, and draft recommendations. RESULTS Eighteen new recommendations were drafted. The panel also updated 3 recommendations from the 2013 guideline. CONCLUSIONS The 2013 guideline was largely reaffirmed with updated recommendations to allow testing of cytology samples, require improved assay sensitivity, and recommend against the use of immunohistochemistry for EGFR testing. Key new recommendations include ROS1 testing for all adenocarcinoma patients; the inclusion of additional genes (ERBB2, MET, BRAF, KRAS, and RET) for laboratories that perform next-generation sequencing panels; immunohistochemistry as an alternative to fluorescence in situ hybridization for ALK and/or ROS1 testing; use of 5% sensitivity assays for EGFR T790M mutations in patients with secondary resistance to EGFR inhibitors; and the use of cell-free DNA to "rule in" targetable mutations when tissue is limited or hard to obtain.
Collapse
Affiliation(s)
- Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Philip T Cagle
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Dara L Aisner
- Department of Pathology, University of Colorado School of Medicine, Denver, New York
| | - Maria E Arcila
- Diagnostic and Molecular Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mary Beth Beasley
- Department of Pathology & Medicine, Pulmonary, Critical Care and Sleep Medicine, New York, New York
| | | | - Carol Colasacco
- Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois
| | - Sanja Dacic
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fred R Hirsch
- Department of Medicine and Pathology, University of Colorado, Denver, New York
| | - Keith Kerr
- Department of Pathology, University of Aberdeen, Aberdeen, Scotland
| | | | - Marc Ladanyi
- Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jan A Nowak
- Department of Molecular Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Lynette Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robyn Temple-Smolkin
- Clinical and Scientific Affairs Division, Association for Molecular Pathology, Bethesda, Maryland
| | - Benjamin Solomon
- Molecular Therapeutics and Biomarkers Laboratory, Peter Maccallum Cancer Center, Melbourne, Australia
| | | | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ming S Tsao
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Christina B Ventura
- Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois
| | - Murry W Wynes
- Scientific Affairs, International Association for the Study of Lung Cancer, Aurora, Colorado
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
8
|
Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn 2018; 20:129-159. [PMID: 29398453 DOI: 10.1016/j.jmoldx.2017.11.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
CONTEXT In 2013, an evidence-based guideline was published by the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology to set standards for the molecular analysis of lung cancers to guide treatment decisions with targeted inhibitors. New evidence has prompted an evaluation of additional laboratory technologies, targetable genes, patient populations, and tumor types for testing. OBJECTIVE To systematically review and update the 2013 guideline to affirm its validity; to assess the evidence of new genetic discoveries, technologies, and therapies; and to issue an evidence-based update. DESIGN The College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology convened an expert panel to develop an evidence-based guideline to help define the key questions and literature search terms, review abstracts and full articles, and draft recommendations. RESULTS Eighteen new recommendations were drafted. The panel also updated 3 recommendations from the 2013 guideline. CONCLUSIONS The 2013 guideline was largely reaffirmed with updated recommendations to allow testing of cytology samples, require improved assay sensitivity, and recommend against the use of immunohistochemistry for EGFR testing. Key new recommendations include ROS1 testing for all adenocarcinoma patients; the inclusion of additional genes (ERBB2, MET, BRAF, KRAS, and RET) for laboratories that perform next-generation sequencing panels; immunohistochemistry as an alternative to fluorescence in situ hybridization for ALK and/or ROS1 testing; use of 5% sensitivity assays for EGFR T790M mutations in patients with secondary resistance to EGFR inhibitors; and the use of cell-free DNA to "rule in" targetable mutations when tissue is limited or hard to obtain.
Collapse
Affiliation(s)
- Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Philip T Cagle
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Dara L Aisner
- Department of Pathology, University of Colorado School of Medicine, Denver, Colorado
| | - Maria E Arcila
- Diagnostic and Molecular Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mary Beth Beasley
- Department of Pathology & Medicine, Pulmonary, Critical Care and Sleep Medicine, New York, New York
| | - Eric H Bernicker
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Carol Colasacco
- Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois
| | - Sanja Dacic
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fred R Hirsch
- Department of Medicine and Pathology, University of Colorado, Denver, Colorado
| | - Keith Kerr
- Department of Pathology, University of Aberdeen, Aberdeen, Scotland
| | | | - Marc Ladanyi
- Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jan A Nowak
- Department of Molecular Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Lynette Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robyn Temple-Smolkin
- Clinical and Scientific Affairs Division, Association for Molecular Pathology, Bethesda, Maryland
| | - Benjamin Solomon
- Molecular Therapeutics and Biomarkers Laboratory, Peter Maccallum Cancer Center, Melbourne, Australia
| | | | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ming S Tsao
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Christina B Ventura
- Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois
| | - Murry W Wynes
- Scientific Affairs, International Association for the Study of Lung Cancer, Aurora, Colorado
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
9
|
Mateu-Jimenez M, Curull V, Pijuan L, Sánchez-Font A, Rivera-Ramos H, Rodríguez-Fuster A, Aguiló R, Gea J, Barreiro E. Systemic and Tumor Th1 and Th2 Inflammatory Profile and Macrophages in Lung Cancer: Influence of Underlying Chronic Respiratory Disease. J Thorac Oncol 2016; 12:235-248. [PMID: 27793775 DOI: 10.1016/j.jtho.2016.09.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/31/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Chronic respiratory conditions, especially chronic obstructive pulmonary disease (COPD), and inflammatory events underlie lung cancer (LC). We hypothesized that profiles of T helper 1 and T helper 2 cytokines and type 1 and type 2 macrophages (M1 and M2) are differentially expressed in lung tumors and blood of patients with NSCLC with and without COPD and that the ratio M1/M2 specifically may influence their survival. METHODS In blood, inflammatory cytokines (determined by enzyme-linked immunosorbent assay) were quantified in 80 patients with LC (60 with LC and COPD [the LC-COPD group] and 20 with LC only [the LC-only group]) and lung specimens (tumor and nontumor) from those undergoing thoracotomy (20 in the LC-COPD group and 20 in the LC-only group). RESULTS In the LC-COPD group compared with in the LC-only group, systemic levels of tumor necrosis factor-α, interleukin-2 (IL-2), transforming growth factor-β, and IL-10 were increased, whereas vascular endothelial growth factor and IL-4 levels were decreased. In lung tumors, levels of tumor necrosis factor-α, transforming growth factor-β, and IL-10 were higher than in nontumor parenchyma in the LC-COPD group, whereas IL-2 and vascular endothelial growth factor levels were higher in tumors of both the LC-only and LC-COPD groups. Compared with in nontumor lung, M1 macrophage counts were reduced whereas M2 counts were increased in tumors of both patient groups, and the M1/M2 ratio was higher in the LC-COPD group than the LC-only group. M1 and M2 counts did not influence patients' survival. CONCLUSIONS The relative predominance of T helper 1 cytokines and M1 macrophages in the blood and tumors of patients with underlying COPD imply that a stronger proinflammatory pattern exists in these patients. Inflammation should not be targeted systematically in all patients with LC. Screening for the presence of underlying respiratory diseases and identification of the specific inflammatory pattern should be carried out in patients with LC, at least in early stages of their disease.
Collapse
Affiliation(s)
- Mercè Mateu-Jimenez
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, Hospital del Mar Medical Research Institute, Health Park Mar, Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Hugo Rivera-Ramos
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain
| | - Alberto Rodríguez-Fuster
- Thoracic Surgery Department, Hospital del Mar Medical Research Institute, Health Park Mar, Barcelona, Spain
| | - Rafael Aguiló
- Thoracic Surgery Department, Hospital del Mar Medical Research Institute, Health Park Mar, Barcelona, Spain
| | - Joaquim Gea
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain.
| |
Collapse
|