1
|
Chemerin: A Potential Regulator of Inflammation and Metabolism for Chronic Obstructive Pulmonary Disease and Pulmonary Rehabilitation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4574509. [PMID: 32337250 PMCID: PMC7166297 DOI: 10.1155/2020/4574509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) features chronic inflammatory reactions of both intra- and extrapulmonary nature. Moreover, COPD is associated with abnormal glucose and lipid metabolism in patients, which influences the prognosis and chronicity of this disease. Abnormal glucose and lipid metabolism are also closely related to inflammation processes. Further insights into the interactions of inflammation and glucose and lipid metabolism might therefore inspire novel therapeutic interventions to promote lung rehabilitation. Chemerin, as a recently discovered adipokine, has been shown to play a role in inflammatory response and glucose and lipid metabolism in many diseases (including COPD). Chemerin recruits inflammatory cells to sites of inflammation during the early stages of COPD, leading to endothelial barrier dysfunction, early vascular remodeling, and angiogenesis. Moreover, it supports the recruitment of antigen-presenting cells that guide immune cells as part of the body's inflammatory responses. Chemerin also regulates metabolism via activation of its cognate receptors. Glucose homeostasis is affected via effects on insulin secretion and sensitivity, and lipid metabolism is changed by increased transformation of preadipocytes to mature adipocytes through chemerin-binding receptors. Controlling chemerin signaling may be a promising approach to improve various aspects of COPD-related dysfunction. Importantly, several studies indicate that chemerin expression in vivo is influenced by exercise. Although available evidence is still limited, therapeutic alterations of chemerin activity may be a promising target of therapeutic approaches aimed at the rehabilitation of COPD patients based on exercises. In conclusion, chemerin plays an essential role in COPD, especially in the inflammatory responses and metabolism, and has a potential to become a target for, and a biomarker of, curative mechanisms underlying exercise-mediated lung rehabilitation.
Collapse
|
2
|
Eskian M, Alavi A, Khorasanizadeh M, Viglianti BL, Jacobsson H, Barwick TD, Meysamie A, Yi SK, Iwano S, Bybel B, Caobelli F, Lococo F, Gea J, Sancho-Muñoz A, Schildt J, Tatcı E, Lapa C, Keramida G, Peters M, Boktor RR, John J, Pitman AG, Mazurek T, Rezaei N. Effect of blood glucose level on standardized uptake value (SUV) in 18F- FDG PET-scan: a systematic review and meta-analysis of 20,807 individual SUV measurements. Eur J Nucl Med Mol Imaging 2018; 46:224-237. [DOI: 10.1007/s00259-018-4194-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
|
3
|
Lu JJ, Wang Q, Xie LH, Zhang Q, Sun SH. Tumor necrosis factor-like weak inducer of apoptosis regulates quadriceps muscle atrophy and fiber-type alteration in a rat model of chronic obstructive pulmonary disease. Tob Induc Dis 2017; 15:43. [PMID: 29151827 PMCID: PMC5679159 DOI: 10.1186/s12971-017-0148-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), weakness and muscle mass loss of the quadriceps muscle has been demonstrated to predict survival and mortality rates of patients. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), as a member of the TNF superfamily, has recently been identified as a key regulator of skeletal muscle wasting and metabolic dysfunction. So our aim was to study the role of TWEAK during quadriceps muscle atrophy and fiber-type transformation in COPD model rats and its possible pathway. Methods Forty-four healthy male adult Wistar rats were randomly divided into two groups: A normal control group (n = 16) and a COPD model group (n = 28). The COPD group was exposed to cigarette smoke for 90 d and injected with porcine pancreatic elastase on day 15, whereas the control group was injected with saline alone. Following treatment, weights of the quadriceps muscles were measured and hematoxylin and eosin staining was performed to identify structural changes in lung and quadriceps muscle tissue. Immunohistochemical staining was also conducted to determine the localization of TWEAK, nuclear factor (NF)-κB, muscle ring finger (MuRF)-1 and proliferator-activated coactivator (PGC)-1a proteins in the quadriceps muscle, and western blotting was used to assess the level of protein expression. Results Compared with controls, COPD model rats exhibited significantly lower quadriceps muscle weight (P < 0.05) accompanied by fiber atrophy and disordered fiber arrangement, a wide gap between adjacent muscle fibers, a significant reduction in nuclear number (P < 0.05) and an uneven size distribution. The proportion of fiber types was also significantly altered (P < 0.05). In addition, TWEAK expression in the quadriceps muscle of COPD model rats was significantly higher than that in control rats (P < 0.05), and was significantly associated with quadriceps atrophy and fiber-type alteration (P < 0.05). Levels of NF-κB, MuRF1 and PGC-1α expression also significantly differed between the two groups (P < 0.05). Conclusions Collectively these data suggest that increased levels of TWEAK may lead to skeletal muscle atrophy and fiber-type alteration, which in turn may be associated with activation of the ubiquitin-proteasome pathway, involving NF-κB, MuRF1 and PGC-1α as potential regulatory factors. These preliminary results in rats suggest that TWEAK may be a therapeutic target for the treatment of muscle atrophy in COPD.
Collapse
Affiliation(s)
- Jun-Juan Lu
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013 People's Republic of China
| | - Qing Wang
- Department of Respiratory Medicine, Changsha Central Hospital, Changsha, Hunan 410004 People's Republic of China
| | - Li Hua Xie
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013 People's Republic of China
| | - Qiang Zhang
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013 People's Republic of China
| | - Sheng Hua Sun
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013 People's Republic of China
| |
Collapse
|
4
|
Gea J, Casadevall C, Pascual S, Orozco-Levi M, Barreiro E. Clinical management of chronic obstructive pulmonary disease patients with muscle dysfunction. J Thorac Dis 2016; 8:3379-3400. [PMID: 28066619 DOI: 10.21037/jtd.2016.11.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Muscle dysfunction is frequently observed in chronic obstructive pulmonary disease (COPD) patients, contributing to their exercise limitation and a worsening prognosis. The main factor leading to limb muscle dysfunction is deconditioning, whereas respiratory muscle dysfunction is mostly the result of pulmonary hyperinflation. However, both limb and respiratory muscles are also influenced by other negative factors, including smoking, systemic inflammation, nutritional abnormalities, exacerbations and some drugs. Limb muscle weakness is generally diagnosed through voluntary isometric maneuvers such as handgrip or quadriceps muscle contraction (dynamometry); while respiratory muscle loss of strength is usually recognized through a decrease in maximal static pressures measured at the mouth. Both types of measurements have validated reference values. Respiratory muscle strength can also be evaluated determining esophageal, gastric and transdiaphragmatic maximal pressures although there is a lack of widely accepted reference equations. Non-volitional maneuvers, obtained through electrical or magnetic stimulation, can be employed in patients unable to cooperate. Muscle endurance can also be assessed, generally using repeated submaximal maneuvers until exhaustion, but no validated reference values are available yet. The treatment of muscle dysfunction is multidimensional and includes improvement in lifestyle habits (smoking abstinence, healthy diet and a good level of physical activity, preferably outside), nutritional measures (diet supplements and occasionally, anabolic drugs), and different modalities of general and muscle training.
Collapse
Affiliation(s)
- Joaquim Gea
- Servei de Pneumologia, Hospital del Mar - IMIM, Experimental Sciences and Health Department (DCEXS), Universitat Pompeu Fabra, CIBERES, ISC III, Barcelona, Catalonia, Spain
| | - Carme Casadevall
- Servei de Pneumologia, Hospital del Mar - IMIM, Experimental Sciences and Health Department (DCEXS), Universitat Pompeu Fabra, CIBERES, ISC III, Barcelona, Catalonia, Spain
| | - Sergi Pascual
- Servei de Pneumologia, Hospital del Mar - IMIM, Experimental Sciences and Health Department (DCEXS), Universitat Pompeu Fabra, CIBERES, ISC III, Barcelona, Catalonia, Spain
| | - Mauricio Orozco-Levi
- Department of Respiratory, Cardiovascular Foundation from Colombia Floridablanca, Santander, Colombia, CIBERES, ISC III, Barcelona, Catalonia, Spain
| | - Esther Barreiro
- Servei de Pneumologia, Hospital del Mar - IMIM, Experimental Sciences and Health Department (DCEXS), Universitat Pompeu Fabra, CIBERES, ISC III, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Wells CE, Polkey MI, Baker EH. Insulin resistance is associated with skeletal muscle weakness in COPD. Respirology 2015; 21:689-96. [DOI: 10.1111/resp.12716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Claire E Wells
- Institute of Infection and Immunity (mail point J1A); St George's, University of London; London UK
| | - Michael I Polkey
- NIHR Respiratory Biomedical Research Unit; Royal Brompton and Harefield NHS Foundation Trust and Imperial College; London UK
| | - Emma H Baker
- Institute of Infection and Immunity (mail point J1A); St George's, University of London; London UK
| |
Collapse
|
6
|
Puig-Vilanova E, Ausin P, Martinez-Llorens J, Gea J, Barreiro E. Do epigenetic events take place in the vastus lateralis of patients with mild chronic obstructive pulmonary disease? PLoS One 2014; 9:e102296. [PMID: 25013984 PMCID: PMC4094498 DOI: 10.1371/journal.pone.0102296] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/16/2014] [Indexed: 12/11/2022] Open
Abstract
Muscle dysfunction is a major comorbidity in Chronic Obstructive Pulmonary Disease (COPD). Several biological mechanisms including epigenetic events regulate muscle mass and function in models of muscle atrophy. Investigations conducted so far have focused on the elucidation of biological mechanisms involved in muscle dysfunction in advanced COPD. We assessed whether the epigenetic profile may be altered in the vastus lateralis of patients with mild COPD, normal body composition, and mildly impaired muscle function and exercise capacity. In vastus lateralis (VL) of mild COPD patients with well-preserved body composition and in healthy age-matched controls, expression of DNA methylation, muscle-enriched microRNAs, histone acetyltransferases (HTAs) and deacetylases (HDACs), protein acetylation, small ubiquitin-related modifier (SUMO) ligases, and muscle structure were explored. All subjects were clinically evaluated. Compared to healthy controls, in the VL of mild COPD patients, muscle function and exercise capacity were moderately reduced, DNA methylation levels did not differ, miR-1 expression levels were increased and positively correlated with both forced expiratory volume in one second (FEV1) and quadriceps force, HDAC4 protein levels were increased, and muscle fiber types and sizes were not different. Moderate skeletal muscle dysfunction is a relevant feature in patients with mild COPD and preserved body composition. Several epigenetic events are differentially expressed in the limb muscles of these patients, probably as an attempt to counterbalance the underlying mechanisms that alter muscle function and mass. The study of patients at early stages of their disease is of interest as they are a target for timely therapeutic interventions that may slow down the course of the disease and prevent the deleterious effects of major comorbidities.
Collapse
Affiliation(s)
- Ester Puig-Vilanova
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Ausin
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juana Martinez-Llorens
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquim Gea
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|