1
|
Feitosa PHR, Castellano MVCDO, Costa CHD, Cardoso ADRO, Pereira LFF, Fernandes FLA, Costa FM, Felisbino MB, Oliveira AFFD, Jardim JR, Miravitlles M. Recommendations for the diagnosis and treatment of alpha-1 antitrypsin deficiency. J Bras Pneumol 2024; 50:e20240235. [PMID: 39661838 PMCID: PMC11601085 DOI: 10.36416/1806-3756/e20240235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 12/13/2024] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a relatively rare genetic disorder, inherited in an autosomal codominant manner, that results in reduced serum AAT concentrations, with a consequent reduction in antielastase activity in the lungs, as well as an increased risk of diseases such as pulmonary emphysema, liver cirrhosis, and necrotizing panniculitis. It results from different mutations in the SERPINA1 gene, leading to changes in the AAT glycoprotein, which can alter its concentration, conformation, and function. Unfortunately, underdiagnosis is quite common; it is possible that only 10% of cases are diagnosed. The most common deficiency is in the Z variant, and it is estimated that more than 3 million people worldwide have combinations of alleles associated with severe AATD. Serum AAT concentrations should be determined, and allelic variants should be identified by phenotyping or genotyping. Monitoring lung function, especially through spirometry, is essential, because it provides information on the progression of the disease. Although pulmonary densitometry appears to be the most sensitive measure of emphysema progression, it should not be used in routine clinical practice to monitor patients. In general, the treatment is similar to that indicated for patients with COPD not caused by AATD. Exogenous administration of purified human serum-derived AAT is the only specific treatment approved for AATD in nonsmoking patients with severe deficiency (serum AAT concentration of < 57 mg/dL or < 11 µM), with evidence of functional loss above the physiological level.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Leon Arrabal Fernandes
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo ( SP) Brasil
| | - Fábio Marcelo Costa
- . Complexo Hospital das Clínicas, Universidade Federal do Paraná - CHC-UFPR - Curitiba (PR) Brasil
| | - Manuela Brisot Felisbino
- . Hospital Universitário, Universidade Federal de Santa Catarina - HU-UFSC - Florianópolis (SC) Brasil
| | | | - Jose R Jardim
- . Universidade Federal de São Paulo, São Paulo (SP) Brasil
| | - Marc Miravitlles
- . Vall d'Hebron Institut de Recerca - VHIR - Hospital Universitário Valld'Hebron, Barcelona, España
| |
Collapse
|
2
|
de-Miguel-Diez J, Lopez-de-Andres A, Zamorano-Leon JJ, Hernández-Barrera V, Cuadrado-Corrales N, Jimenez-Sierra A, Carabantes-Alarcon D, Jimenez-Garcia R. Hospital Admission Trends in Alpha-1-Antitrypsin Deficiency: A Sex-Based Analysis from the Spanish National Discharge Database, 2016-2022. J Clin Med 2024; 13:6564. [PMID: 39518703 PMCID: PMC11547007 DOI: 10.3390/jcm13216564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives: To analyze the number and clinical characteristics of hospital admissions in Spain between 2016 and 2022 in which alpha-1-antitrypsin deficiency (AATD) was coded; to describe and analyze differences in these parameters between men and women; and to identify variables associated with a worse prognosis. Methods: We used a nationwide discharge database to select all admissions featuring an AATD diagnostic code (ICD-10 code E88.01) in any position. Results: We found 5142 hospital admissions with a diagnosis of AATD and detected a significant increase in their number from 2016 to 2022 (p = 0.034 for trend). Males accounted for 58.21% of the hospitalizations and had a higher Charlson Comorbidity Index than women (1.86 vs. 1.33; p < 0.001), were hospitalized more frequently (21.18% of men were hospitalized more than once vs. 17.76% of women, p < 0.001), and had a higher probability of severe disease (OR 1.39; 95%CI 1.10-1.75). Crude in-hospital mortality (IHM) was 6.85% in men and 4.8% in women (p = 0.007). The variables associated with IHM in both sexes were older age, more hospital admissions, and liver disease or lung cancer. Invasive and non-invasive mechanical ventilation and admission to the ICU were also associated with IHM in men and women. Multivariable adjustment revealed no association between sex and IHM. Conclusions: The number of hospitalizations for AATD increased in Spain from 2016 to 2022. Men represented almost 60% of hospitalizations, were admitted more frequently and with more comorbidities, and had a higher probability of severe disease than women. There was no association between sex and IHM.
Collapse
Affiliation(s)
- Javier de-Miguel-Diez
- Respiratory Care Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain;
| | - Ana Lopez-de-Andres
- Department of Public Health & Maternal and Child Health, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José J. Zamorano-Leon
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.J.Z.-L.); (N.C.-C.); (D.C.-A.); (R.J.-G.)
| | - Valentín Hernández-Barrera
- Preventive Medicine and Public Health Teaching and Research Unit, Health Sciences Faculty, Rey Juan Carlos University, 28922 Madrid, Spain;
| | - Natividad Cuadrado-Corrales
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.J.Z.-L.); (N.C.-C.); (D.C.-A.); (R.J.-G.)
| | | | - David Carabantes-Alarcon
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.J.Z.-L.); (N.C.-C.); (D.C.-A.); (R.J.-G.)
| | - Rodrigo Jimenez-Garcia
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.J.Z.-L.); (N.C.-C.); (D.C.-A.); (R.J.-G.)
| |
Collapse
|
3
|
Miravitlles M, Turner AM, Sucena M, Mornex JF, Greulich T, Wencker M, McElvaney NG. Assessment and monitoring of lung disease in patients with severe alpha 1 antitrypsin deficiency: a european delphi consensus of the EARCO group. Respir Res 2024; 25:318. [PMID: 39160517 PMCID: PMC11334445 DOI: 10.1186/s12931-024-02929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Currently, there is conflicting information and guidance on the effective management of Alpha 1 Antitrypsin Deficiency (AATD). Establishing a consensus of assessment and disease management specific to AATD is important for achieving a standardized treatment pathway and for improving patient outcomes. Here, we aim to utilize the Delphi method to establish a European consensus for the assessment and management of patients with severe AATD. METHODS Two rounds of a Delphi survey were completed online by members of the European Alpha-1 Research Collaboration (EARCO). Respondents were asked to indicate their agreement with proposed statements for patients with no respiratory symptoms, stable respiratory disease, and worsening respiratory disease using a Likert scale of 1-7. Levels of agreement between respondents were calculated using a weighted average. RESULTS Round 1 of the Delphi survey was sent to 103 members of EARCO and 38/103 (36.9%) pulmonologists from across 15 countries completed all 109 questions. Round 2 was sent to all who completed Round 1 and 36/38 (94.7%) completed all 79 questions. Responses regarding spirometry, body plethysmography, high-resolution computed tomography, and the initiation of augmentation therapy showed little variability among physicians, but there was discordance among other aspects, such as the use of low-dose computed tomography in both a research setting and routine clinical care. CONCLUSIONS These results provide expert opinions for the assessment and monitoring of patients with severe AATD, which could be used to provide updated recommendations and standardized treatment pathways for patients across Europe.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department, Health Care Provider of the European Reference Network On Rare Respiratory Diseases (ERN LUNG), Hospital Universitari Vall d'Hebron/Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham, Birmingham, UK
| | - Maria Sucena
- Pulmonology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Jean-François Mornex
- Université Claude Bernard Lyon 1, INRAE, UMR754, IVPC, Hospices Civils de Lyon, Inserm, CIC1407, F-69100, Lyon, France
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Philipps-University, Marburg, Germany
| | | | - N Gerard McElvaney
- Irish Centre for Genetic Lung Disease, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
4
|
Barrecheguren M, Hidalgo PP, Gonçalves JMF, de Miguel Díez J. Diagnosis of Alpha-1 Antitrypsin Deficiency (AATD) in Primary Care. OPEN RESPIRATORY ARCHIVES 2024; 6:100310. [PMID: 38560506 PMCID: PMC10981108 DOI: 10.1016/j.opresp.2024.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Affiliation(s)
- Miriam Barrecheguren
- Servicio de Neumología, Hospital Vall d’Hebron, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Juan Marco Figueira Gonçalves
- Respiratory Department, Research Unit, University Hospital Nuestra Señora de Candelaria, Tenerife, Spain
- Canary Tropical Disease and Public Health Institute, La Laguna University, La Laguna, Spain
| | - Javier de Miguel Díez
- Servicio de Neumología, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Calle Rubio M, Miravitlles M, López-Campos JL, Soler-Cataluña JJ, Alcazar Navarrete B, Fuentes-Ferrer ME, Rodriguez Hermosa JL. Detection of Alpha-1 Antitrypsin Levels in Chronic Obstructive Pulmonary Disease in Respiratory Clinics in Spain: Results of the EPOCONSUL 2021 Audit. J Clin Med 2024; 13:955. [PMID: 38398268 PMCID: PMC10889736 DOI: 10.3390/jcm13040955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is an underdiagnosed condition despite being one of the most common inherited disorders in adults that is associated with an increased risk of developing chronic obstructive pulmonary disease (COPD). The aim was to evaluate the frequency of performing AAT levels and associated factors in COPD patients in an audit conducted in 2021-2022, as well as to compare with a previous audit conducted in 2014-2015. METHODS EPOCONSUL 2021 is a cross-sectional audit that evaluated the outpatient care provided to COPD patients in respiratory clinics in Spain based on available data from medical registries. RESULTS 4225 patients with a diagnosis of COPD from 45 centers were audited in 2021. A total of 1670 (39.5%) patients underwent AAT determination. Being treated at a specialized COPD outpatient clinic (OR 1.88, p = 0.007), age ≤ 55 years old (OR 1.84, p = 0.007) and a FEV1 < 50% (OR 1.86, p < 0.001) were associated with a higher likelihood of being tested for AAT, while Charlson index ≥ 3 (OR 0.63, p < 0.001) and genotyping of AATD availability (OR 0.42, p < 0.001) showed a statistically significant negative association. The analysis of cases included in respiratory units that participated in both audits showed an increase in the proportion of cases with AAT serum level testing available (adjusted OR 2.81, p < 0.001). The percentage of individuals with serum AAT levels < 60 mg/dL (a severe AATD) was 4%. CONCLUSIONS Our analysis identifies significant improvements in adherence to the recommendation to test AAT levels in COPD patients, performed in 4 out of 10 patients, being more likely at younger ages and with higher COPD severity, and with a detection of severe AATD of 4% among those tested, suggesting that clinicians still perform AAT testing in COPD patients selectively. Therefore, efforts are still needed to optimize AATD screening and establish new early detection strategies to reduce morbidity and mortality in these patients.
Collapse
Affiliation(s)
- Myriam Calle Rubio
- Pulmonology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marc Miravitlles
- Pulmonary Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - José Luis López-Campos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Respiratory Disease Medical-Surgical Unit, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41009 Sevilla, Spain
| | - Juan J. Soler-Cataluña
- Pulmonology Department, Hospital Arnau de Vilanova-Lliria, 46015 Valencia, Spain;
- Medicine Department, Valencia University, 46010 Valencia, Spain
| | - Bernardino Alcazar Navarrete
- Pulmonary Department, Hospital Universitario Virgen de las Nieves, Instituto Biosanitario de Granada, 18014 Granada, Spain;
| | - Manuel E. Fuentes-Ferrer
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Juan Luis Rodriguez Hermosa
- Pulmonology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Aljama C, Martin T, Granados G, Miravitlles M, Barrecheguren M. Personalised indication of augmentation therapy for emphysema associated with severe alpha-1 antitrypsin deficiency: a case series. Ther Adv Respir Dis 2024; 18:17534666241271917. [PMID: 39132722 PMCID: PMC11320671 DOI: 10.1177/17534666241271917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Severe alpha-1 antitrypsin deficiency (AATD) is associated with an increased risk of emphysema. However, the clinical manifestations are very heterogeneous, and an individual prognosis is very difficult to establish. Intravenous augmentation therapy with alpha-1 antitrypsin (AAT) from pooled blood donors is the only specific treatment available, but it requires weekly or biweekly administration for life. Several guidelines provide the indication criteria for the initiation of AAT augmentation therapy. However, in clinical practice, there are situations in which the decision as to when to start treatment becomes uncertain and some studies have shown great variability in the indication of this treatment even among specialists. The usual dilemma is between initiating augmentation therapy in individuals who may not develop significant lung disease or in whom disease will not progress or delaying it in patients who may otherwise rapidly and irreversibly progress. We illustrate this dilemma with five clinical cases: from the case of a patient with normal lung function who requests initiation of therapy to a moderately stable patient without augmentation or a mild patient who, after several years of remaining stable without treatment, deterioration in lung function initiated and, consequently, augmentation therapy was begun. All the nuances associated with the indication of augmentation justify a personalised approach and the decision about initiating augmentation therapy must be made after careful consideration of the pros and cons with the patient in reference centres with experience in treatment. These reference centres can work in collaboration with local hospitals where patients can be closely followed and augmentation therapy can be administered to avoid unnecessary travelling, making periodical administrations more comfortable for the patient.
Collapse
Affiliation(s)
- Cristina Aljama
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Teresa Martin
- Pneumology Department, Hospital Beatriz Ângelo, Loures, Portugal
| | - Galo Granados
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), P. Vall d’Hebron 119-129, Barcelona 08035, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| |
Collapse
|
7
|
Miravitlles M, Anzueto A, Barrecheguren M. Nine controversial questions about augmentation therapy for alpha-1 antitrypsin deficiency: a viewpoint. Eur Respir Rev 2023; 32:230170. [PMID: 38056890 DOI: 10.1183/16000617.0170-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023] Open
Abstract
Augmentation therapy with intravenous alpha-1 antitrypsin is the only specific treatment for alpha-1 antitrypsin deficiency (AATD)-associated emphysema. This treatment has been available and remained basically unchanged for more than 35 years, but many questions persist regarding its indications, regimen of administration and efficacy. Because AATD is a rare disease, it has not been possible to conduct randomised, placebo-controlled trials that are adequately powered for the usual outcomes analysed in non-AATD-related COPD, such as lung function decline, exacerbations, symptoms or quality of life. New outcomes such as lung densitometry measured by computed tomography are more sensitive for identifying emphysema progression but are not widely accepted by regulatory agencies. In addition, clinical manifestations, severity and the natural history of lung disease associated with AATD are very heterogeneous, which means that individual prediction of prognosis is challenging. Therefore, the indication for augmentation is sometimes a dilemma between initiating treatment in individuals who may not develop significant lung disease or in whom disease will not progress and delaying it in patients who will otherwise rapidly and irreversibly progress.Other areas of debate are the possible indication for augmentation in patients with severe AATD and respiratory diseases other than emphysema, such as bronchiectasis or asthma, and the use of therapy after lung transplant in AATD patients. All these uncertainties imply that the indication for treatment must be personalised in expert reference centres after in-depth discussion of the pros and cons of augmentation with the patient.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Antonio Anzueto
- Pulmonary Disease/Critical Care, University of Texas Health, and South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| |
Collapse
|
8
|
Tural Onur S, Natoli A, Dreger B, Arınç S, Sarıoğlu N, Çörtük M, Karadoğan D, Şenyiğit A, Yıldız BP, Köktürk N, Argun Barıs S, Kodalak Cengiz S, Polatli M. An Alpha-1 Antitrypsin Deficiency Screening Study in Patients with Chronic Obstructive Pulmonary Disease, Bronchiectasis, or Asthma in Turkey. Int J Chron Obstruct Pulmon Dis 2023; 18:2785-2794. [PMID: 38046982 PMCID: PMC10693271 DOI: 10.2147/copd.s425835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose Alpha-1 antitrypsin deficiency (AATD) is a rare hereditary condition characterized by decreased serum alpha-1 antitrypsin (AAT) levels. We aim to identify AATD in patients with chronic obstructive pulmonary disease (COPD), bronchiectasis, or asthma and to report the frequency of AAT variants in Turkey. Patients and Methods This non-interventional, multicenter, prospective study was conducted between October 2021 and June 2022. Adult patients with COPD, bronchiectasis, asthma, liver symptoms, or family members with AATD were included. Demographic and clinical characteristics, pulmonary diagnosis, respiratory symptoms, and AAT serum levels were assessed. Whole blood samples were collected as dried blood spots, and the most common AATD mutations were simultaneously tested by allele-specific genotyping. Results A total of 1088 patients, mainly diagnosed with COPD (92.7%) and shortness of breath (78.7%), were assessed. Fifty-one (5%) were found to have AATD mutations. Fifteen (29.4%) patients had Pi*S or Pi*Z mutations, whereas 36 (70.6%) patients carried rare alleles Pi*M malton (n=18, 35.3% of mutations), Pi*I (n=8, 16%), Pi*P lowell (n=7, 14%), Pi*M heerlen (n=2, 4%), and Pi*S iiyama (n=1, 2%). The most common heterozygous combinations were Pi*M/Z (n=12, 24%), and Pi*M/M malton (n=11, 22%). Ten patients with severe AATD due to two deficiency alleles were identified, two with the Pi*Z/Z genotype, four with the genotype Pi*M malton/M malton, three with Pi*Z/M malton, and one with Pi*Z/M heerlen. Conclusion Our results identified AATD mutations as a genetic-based contributor to lung disease in patients with COPD or bronchiectasis and assessed their frequency in a population of Turkish patients.
Collapse
Affiliation(s)
- Seda Tural Onur
- Department of Pulmonology, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Antonino Natoli
- Scientific and Medical Affairs, Scientific Innovation Office, Grifols, Frankfurt, Deutschland
| | - Bettina Dreger
- Scientific and Medical Affairs, Scientific Innovation Office, Grifols, Frankfurt, Deutschland
| | - Sibel Arınç
- Clinic of Chest Diseases, University of Health Sciences Turkey, S.B.Ü. Süreyyapaşa Chest Diseases and Thoracic Surgery Training and Research Hospital, İstanbul, Türkiye
| | - Nurhan Sarıoğlu
- Department of Pulmonology, Balıkesir University Faculty of Medicine, Pulmonology Clinic, Balıkesir, Türkiye
| | - Mustafa Çörtük
- Department of Pulmonology, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Dilek Karadoğan
- Department of Chest Diseases, Recep Tayyip Erdoğan University, School of Medicine, Rize, Türkiye
| | - Abdurrahman Şenyiğit
- Department of Chest Diseases, Dicle University Faculty of Medicine Hospital, Diyarbakır, Türkiye
| | - Birsen Pınar Yıldız
- Department of Pulmonology, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Nurdan Köktürk
- Department of Pulmonary Medicine, Gazi University, School of Medicine, Ankara, Türkiye
| | - Serap Argun Barıs
- Department of Pulmonary Diseases, Faculty of Medicine, Kocaeli University, Kocaeli, Türkiye
| | | | - Mehmet Polatli
- Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
9
|
Torres-Durán M, López-Campos JL, Calle Rubio M, Montero-Martínez C, Priegue Carrera A, Amaro Rodríguez R, Barrecheguren M, Barrio Guirado MÁ, Callejas-González FJ, Casas-Maldonado F, Diab-Cáceres L, García-Meseguer P, Hernández-Pérez JM, Lázaro-Asegurado L, Martínez-González C, Martínez Rivera C, Michel FJ, Montoro-Ronsano JB, Sánchez R, Ortiz-Pica M, Parra I, Quintero García JP, Ruiz-Serrano-de la Espada MDR, Tortajada-Goitia B, Miravitlles M. Recommendations for the Implementation of the Self-Administration of Alpha-1 Antitrypsin. Int J Chron Obstruct Pulmon Dis 2023; 18:1691-1700. [PMID: 37559832 PMCID: PMC10408674 DOI: 10.2147/copd.s410611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Purpose Administration of exogenous alpha-1 antitrypsin (AAT) is the only specific therapy for the management of pulmonary morbidity in patients with AAT deficiency. It requires weekly or biweekly intravenous infusions, which may impact patient independence and quality of life. Self-administration of AAT therapy is an alternative to reduce the burden for patients who require AAT therapy. We presented herein experts' recommendations for the implementation of a program for the self-administration of AAT. Methods This project was conducted using a modified nominal group technique and was undertaken in two online meetings involving the participation of 25 experts: specialists in pulmonology (n=17), nurses (n=5) and hospital pharmacists (n=3). Results The following issues were discussed, and several recommendations were agreed upon on the following topics: a) patient profile and clinical evaluation, establishing selection criteria that should include clinical as well as social criteria; b) role of health care professionals, suggested roles for specialists in pulmonology, nurses, and hospital pharmacists; c) training by the nurse, including recommendations before initiating the training and the content of the training sessions; and d) logistic issues and follow-up, adherence, and patient support. Conclusion We expect this proposal to increase awareness of this therapeutic alternative and facilitate the implementation of self-administration programs, thus contributing to optimizing the patient experience with AAT therapy. Further research on the outcomes of these programs, especially from the patient perspective, will also help to improve their design and implementation.
Collapse
Affiliation(s)
- María Torres-Durán
- Pneumology Department, Hospital Álvaro Cunqueiro, NeumoVigo I+i Research Group, IIS Galicia Sur, Vigo, Spain
| | - José Luis López-Campos
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Medical and Surgery Unit for Respiratory Diseases, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Myriam Calle Rubio
- Pneumology Department, Research Institute of Hospital Clínico San Carlos (IdISSC), Department of Medicine, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
| | | | | | | | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | | | | - Layla Diab-Cáceres
- Pneumology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - José María Hernández-Pérez
- Pneumology Department, Hospital Universitario Nuestra Señora de La Candelaria, Santa Cruz de Tenerife, Tenerife, Spain
| | | | | | - Carlos Martínez Rivera
- Pneumology Department, Hospital Universitario Germans Trías I Pujol, Institut d’investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | | | - José-Bruno Montoro-Ronsano
- Hospital Pharmacy Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Raquel Sánchez
- Pneumology Department, Hospital Universitario Basurto, Bilbao, Spain
| | | | - Isabel Parra
- Pneumology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | | | | | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
10
|
Reinoso-Arija R, Proaño C, Ruiz-Serrano R, Núñez Ollero D, Ruiz-Duque B, Ortega Ruiz F, Márquez Martín E, Carrasco Hernández L, López-Campos JL. [Results of the Implementation of a Case-Finding Program for Alpha-1 Antitrypsin Deficiency in COPD Patients]. OPEN RESPIRATORY ARCHIVES 2023; 5:100251. [PMID: 37810428 PMCID: PMC10556779 DOI: 10.1016/j.opresp.2023.100251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives Currently, the identification of new cases of alpha-1 antitrypsin deficiency (AATD) continues to be one of the great challenges facing the disease. The present study aims to perform an analysis of the results of the implementation of a systematic case detection program of AATD for patients with chronic obstructive pulmonary disease. Material and methods Cross-sectional observational study in which the results of AAT screening until December 2022 were analyzed. The cases studied were divided into three periods: (1) no systematic case detection until 2013; (2) systematic case detection of S and Z alleles for cases with AAT < 90 mg/dL until 2018, and (3) systematic case detection of 14 mutations for cases with AAT < 120 mg/dL since 2018. Results A total of 471 cases were studied, of which 306 (65.0%) were carriers of some mutation related to HAD. The number of detected cases of all mutations with their percentage against those studied in each period was respectively: 6 (100%), 48 (88.8%) and 253 (61.5%). If we limit to severe mutations (AAT < 57.2 mg/dL), the distribution by periods was respectively: 3 (50.0), 10 (18.5%) and 17 (4.1%). Conclusions The present study describes the changes in the detection of patients carrying DAAT-related alleles with three different case identification policies. The data support the use of systematic case detection system in the COPD patient population.
Collapse
Affiliation(s)
- Rocío Reinoso-Arija
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, España
| | - Carmen Proaño
- Departamento de Medicina, Universidad de Sevilla, Sevilla, España
| | - Rosario Ruiz-Serrano
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, España
| | - Dolores Núñez Ollero
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, España
| | - Borja Ruiz-Duque
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, España
| | - Francisco Ortega Ruiz
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, España
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España
| | - Eduardo Márquez Martín
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, España
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España
| | - Laura Carrasco Hernández
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, España
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España
| | - José Luis López-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, España
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España
| |
Collapse
|
11
|
Lopez-Campos JL, Rapun N, Czischke K, Jardim JR, Acquier MF, Munive AA, Günen H, Drobnic E, Miravitlles M, Osaba L. Distribution of alpha1 antitrypsin rare alleles in six countries: Results from the Progenika diagnostic network. Hum Genomics 2023; 17:48. [PMID: 37277845 DOI: 10.1186/s40246-023-00497-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Knowledge of the frequency of rare SERPINA1 mutations could help in the management of alpha1 antitrypsin deficiency (AATD). The present study aims to assess the frequencies of rare and null alleles and their respiratory and hepatic pathogenicity. METHODS This is a secondary analysis of a study that evaluated the viability of the Progenika diagnostic genotyping system in six different countries by analyzing 30,827 samples from cases of suspected AATD. Allele-specific genotyping was carried out with the Progenika A1AT Genotyping Test which analyses 14 mutations in buccal swabs or dried blood spots samples. SERPINA1 gene sequencing was performed for serum AAT-genotype discrepancies or by request of the clinician. Only cases with rare mutations were included in this analysis. RESULTS There were 818 cases (2.6%) carrying a rare allele, excluding newly identified mutations. All were heterozygous except for 20 that were homozygous. The most frequent alleles were the M-like alleles, PI*Mmalton and PI*Mheerlen. Of the 14 mutations included in the Progenika panel, there were no cases detected of PI*Siiyama, PI*Q0granite falls and PI*Q0west. Other alleles not included in the 14-mutation panel and identified by gene sequencing included PI*Mwürzburg, PI*Zbristol, and PI*Zwrexham, and the null alleles PI*Q0porto, PI*Q0madrid, PI*Q0brescia, and PI*Q0kayseri. CONCLUSIONS The Progenika diagnostic network has allowed the identification of several rare alleles, some unexpected and not included in the initial diagnostic panel. This establishes a new perspective on the distribution of these alleles in different countries. These findings may help prioritize allele selection for routine testing and highlights the need for further research into their pathogenetic role.
Collapse
Affiliation(s)
- José Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Avda. Manuel Siurot, S/N, 41013, Seville, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Noelia Rapun
- Progenika Biopharma, a Grifols Company. Derio, Vizcaya, Spain
| | - Karen Czischke
- Departamento de Neumología, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | - José R Jardim
- Centro de Reabilitação Pulmonar da Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, Brazil
| | | | - Abraham Ali Munive
- Departamento Médico, Fundación Neumológica Colombiana, Bogotá, D.C., Colombia
| | - Hakan Günen
- University of Health Sciences, Süreyyapaşa Research and Training Center for Chest Diseases and Thoracic Surgery, Istanbul, Turkey
| | | | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Osaba
- Progenika Biopharma, a Grifols Company. Derio, Vizcaya, Spain
| |
Collapse
|
12
|
Mornex JF, Balduyck M, Bouchecareilh M, Cuvelier A, Epaud R, Kerjouan M, Le Rouzic O, Pison C, Plantier L, Pujazon MC, Reynaud-Gaubert M, Toutain A, Trumbic B, Willemin MC, Zysman M, Brun O, Campana M, Chabot F, Chamouard V, Dechomet M, Fauve J, Girerd B, Gnakamene C, Lefrançois S, Lombard JN, Maitre B, Maynié-François C, Moerman A, Payancé A, Reix P, Revel D, Revel MP, Schuers M, Terrioux P, Theron D, Willersinn F, Cottin V, Mal H. [French clinical practice guidelines for the diagnosis and management of lung disease with alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:633-656. [PMID: 35906149 DOI: 10.1016/j.rmr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France.
| | - M Balduyck
- CHU de Lille, centre de biologie pathologie, laboratoire de biochimie et biologie moléculaire HMNO, faculté de pharmacie, EA 7364 RADEME, université de Lille, service de biochimie et biologie moléculaire, Lille, France
| | - M Bouchecareilh
- Université de Bordeaux, CNRS, Inserm U1053 BaRITon, Bordeaux, France
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, Rouen, France; Groupe de recherche sur le handicap ventilatoire et neurologique (GRHVN), université Normandie Rouen, Rouen, France
| | - R Epaud
- Centre de références des maladies respiratoires rares, site de Créteil, Créteil, France
| | - M Kerjouan
- Service de pneumologie, CHU Pontchaillou, Rennes, France
| | - O Le Rouzic
- CHU Lille, service de pneumologie et immuno-allergologie, Lille, France; Université de Lille, CNRS, Inserm, institut Pasteur de Lille, U1019, UMR 9017, CIIL, OpInfIELD team, Lille, France
| | - C Pison
- Service de pneumologie physiologie, pôle thorax et vaisseaux, CHU de Grenoble, Grenoble, France; Université Grenoble Alpes, Saint-Martin-d'Hères, France
| | - L Plantier
- Service de pneumologie et explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France; Université de Tours, CEPR, Inserm UMR1100, Tours, France
| | - M-C Pujazon
- Service de pneumologie et allergologie, pôle clinique des voies respiratoires, hôpital Larrey, Toulouse, France
| | - M Reynaud-Gaubert
- Service de pneumologie, centre de compétence pour les maladies pulmonaires rares, AP-HM, CHU Nord, Marseille, France; Aix-Marseille université, IHU-Méditerranée infection, Marseille, France
| | - A Toutain
- Service de génétique, CHU de Tours, Tours, France; UMR 1253, iBrain, université de Tours, Inserm, Tours, France
| | | | - M-C Willemin
- Service de pneumologie et oncologie thoracique, CHU d'Angers, hôpital Larrey, Angers, France
| | - M Zysman
- Service de pneumologie, CHU Haut-Lévèque, Bordeaux, France; Université de Bordeaux, centre de recherche cardiothoracique, Inserm U1045, CIC 1401, Pessac, France
| | - O Brun
- Centre de pneumologie et d'allergologie respiratoire, Perpignan, France
| | - M Campana
- Service de pneumologie, CHR d'Orléans, Orléans, France
| | - F Chabot
- Département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France; Inserm U1116, université de Lorraine, Vandœuvre-lès-Nancy, France
| | - V Chamouard
- Service pharmaceutique, hôpital cardiologique, GHE, HCL, Bron, France
| | - M Dechomet
- Service d'immunologie biologique, centre de biologie sud, centre hospitalier Lyon Sud, HCL, Pierre-Bénite, France
| | - J Fauve
- Cabinet médical, Bollène, France
| | - B Girerd
- Université Paris-Saclay, faculté de médecine, Le Kremlin-Bicêtre, France; AP-HP, centre de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs respiratoires, hôpital Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR_S 999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - C Gnakamene
- Service de pneumologie, CH de Montélimar, GH Portes de Provence, Montélimar, France
| | | | | | - B Maitre
- Service de pneumologie, centre hospitalier intercommunal, Créteil, France; Inserm U952, UFR de santé, université Paris-Est Créteil, Créteil, France
| | - C Maynié-François
- Université de Lyon, collège universitaire de médecine générale, Lyon, France; Université Claude-Bernard Lyon 1, laboratoire de biométrie et biologie évolutive, UMR5558, Villeurbanne, France
| | - A Moerman
- CHRU de Lille, hôpital Jeanne-de-Flandre, Lille, France; Cabinet de médecine générale, Lille, France
| | - A Payancé
- Service d'hépatologie, CHU Beaujon, AP-HP, Clichy, France; Filière de santé maladies rares du foie de l'adulte et de l'enfant (FilFoie), CHU Saint-Antoine, Paris, France
| | - P Reix
- Service de pneumologie pédiatrique, allergologie, mucoviscidose, hôpital Femme-Mère-Enfant, HCL, Bron, France; UMR 5558 CNRS équipe EMET, université Claude-Bernard Lyon 1, Villeurbanne, France
| | - D Revel
- Université Claude-Bernard Lyon 1, Lyon, France; Hospices civils de Lyon, Lyon, France
| | - M-P Revel
- Université Paris Descartes, Paris, France; Service de radiologie, hôpital Cochin, AP-HP, Paris, France
| | - M Schuers
- Université de Rouen Normandie, département de médecine générale, Rouen, France; Sorbonne université, LIMICS U1142, Paris, France
| | | | - D Theron
- Asten santé, Isneauville, France
| | | | - V Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France
| | - H Mal
- Service de pneumologie B, hôpital Bichat-Claude-Bernard, AP-HP, Paris, France; Inserm U1152, université Paris Diderot, site Xavier Bichat, Paris, France
| |
Collapse
|
13
|
Genetic testing of allelic variants of PIZ (GLU342Lys, RS28929474) and PIS (GLU264Val, RS17580) of SERPINA1 gene in children with bronchial asthma. EUREKA: LIFE SCIENCES 2022. [DOI: 10.21303/2504-5695.2022.002415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
According to world publications, mutations in the SERPINA1 gene may be a genetic risk factor for severe chronic obstructive pulmonary disease and, consequently, rapid progression of respiratory dysfunction. This disease leads to a decrease in the level of alpha-1-antitrypsin protein. It is inherited by autosomal recessive type, but there are registered cases of codominance. In the absence of treatment, diseases of the respiratory system become chronic and lead to disability in adulthood.
Early diagnosis of AAT deficiency is important to prevent complications and reduce mortality among people with this pathology. Due to these factors, genetic testing of SERPINA1 gene mutations in children with chronic lung diseases is appropriate to detect and prevent severe complications, associated with AATD.
The aim of this work is to improve the effectiveness of early diagnosis of AAT deficiency in children with bronchial asthma and recurrent obstructive bronchitis by identifying different genotypes and phenotypes of A1AT deficiency, studying their relationship with the clinical course of respiratory diseases in children
Collapse
|
14
|
Frequency of alleles and genotypes associated with alpha-1 antitrypsin deficiency in clinical and general populations: Revelations about underdiagnosis. Pulmonology 2022; 29:214-220. [PMID: 35346640 DOI: 10.1016/j.pulmoe.2022.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Alpha-1 antitrypsin deficiency (AATD) is an underdiagnosed hereditary condition that promotes the development of lung and liver diseases, and the most common potentially life-threatening genetic condition in Caucasian adults. In this study, the clinical and genetic profile of pulmonary patients from a single center in La Palma Island (Canary Islands, Spain) was assessed to predict how to increase AATD diagnosis. METHODS AATD was tested in 1,493 pulmonary outpatients without regard to respiratory symptoms and 465 newborns. Variants of the SERPINA1 gene were characterised by real-time PCR, DNA sequencing, molecular haplotyping and phenotyping (AAT isoelectric focusing). Different respiratory pathologies were diagnosed in patients and their levels of serum AAT were measured by nephelometry. RESULTS The prevalence of pneumological patients with AATD alleles was 30.5%, including PI*S, PI*Z and 6 rare genetic variants. Certain deficiency genotypes were unevenly distributed among patients diagnosed with respiratory diseases: PI*ZZ (71.4%) and PI*SS (34.8%) genotypes were more represented in patients with chronic obstructive pulmonary disease (COPD), whereas PI*MZ (27.7%) and PI*SZ (34.5%) genotypes were more abundant in patients with bronchial asthma. The estimated frequency of PI*S and PI*Z alleles in the general population was 8.2% and 2.1%, respectively. A very significant enrichment (p< 0.01) of PI*S allele, independent of the PI*Z allele, was detected in the clinical population. CONCLUSIONS AATD diagnosis would improve if both the COPD and the asthmatic patients were included to screening programs. The prevalence of PI*ZZ genotype in La Palma (1/2,162) was relatively high within Spain (average 1/3,344).
Collapse
|
15
|
Greulich T, Albert A, Cassel W, Boeselt T, Peychev E, Klemmer A, Ferreira F, Clarenbach C, Torres-Duran ML, Turner AM, Miravitlles M. Opinions and Attitudes of Pulmonologists About Augmentation Therapy in Patients with Alpha-1 Antitrypsin Deficiency. A Survey of the EARCO Group. Int J Chron Obstruct Pulmon Dis 2022; 17:53-64. [PMID: 35023913 PMCID: PMC8743984 DOI: 10.2147/copd.s346051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Augmentation therapy (AT) is the only specific treatment licensed for patients with alpha-1 antitrypsin deficiency (AATD) associated lung disease. Since patients with severe AATD may have a very different prognosis and AT requires intravenous infusions for life, the decision to initiate AT may be challenging. Methods This survey was conducted on 63 experts in AATD from 13 European countries about their opinions and attitudes regarding AT. Participants were asked to rank the importance of 11 identified factors related with the prescription of AT. In addition, each participant was asked to respond to the indication of AT for 30 out of 500 hypothetical cases developed with the combinations of the 11 factors. Each case was evaluated by 3 experts to check the concordance. Results The variables that scored higher on preferences for initiating AT were AAT genotype (score 8.6 from a Likert scale 0–10 (SD: 1.7)), AATD serum level (8.2 (SD:2.4)) and FEV1 (%) decline (7.9 (SD:2.4)). Among the 500 different cases, there was an agreement in indication of AT among the 3 experts in 291 (58.2%). Regarding the variables associated with AT, it was indicated to 81.9% of Pi*ZZ, 52.4% of Pi*SZ and 9.8% of Pi*MZ (p < 0.0001). For Pi*ZZ patients, multivariate analysis identified younger age, reduced FEV1 (%), higher FEV1 decline and worse emphysema as significantly associated with prescription (AUC = 0.8114); for Pi*SZ variables were younger age, worse FEV1 (%) and worse emphysema (AUC = 0.7414); and for Pi*MZ younger age, worse DLCO (%), higher DLCO decline and dyspnea (AUC = 0.8387). Conclusion There is a high variability in the criteria for prescription of AT among European experts. Most cases were recommended AT according to guidelines, but a significant number of patients with genotype Pi*SZ and almost 10% Pi*MZ were recommended to initiate AT despite the lack of evidence of efficacy in these genotypes.
Collapse
Affiliation(s)
- Timm Greulich
- University Medical Centre Giessen and Marburg, Philipps-University, Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Centre for Lung Research (DZL), Marburg, Germany
| | - Anna Albert
- University Medical Centre Giessen and Marburg, Philipps-University, Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Centre for Lung Research (DZL), Marburg, Germany
| | - Werner Cassel
- University Medical Centre Giessen and Marburg, Philipps-University, Department of Medicine, Pulmonary and Critical Care Medicine, Sleep Disorders Centre, Member of the German Centre for Lung Research (DZL), Marburg, Germany
| | - Tobias Boeselt
- University Medical Centre Giessen and Marburg, Philipps-University, Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Centre for Lung Research (DZL), Marburg, Germany
| | - Erika Peychev
- University Medical Centre Giessen and Marburg, Philipps-University, Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Centre for Lung Research (DZL), Marburg, Germany
| | - Andreas Klemmer
- University Medical Centre Giessen and Marburg, Philipps-University, Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Centre for Lung Research (DZL), Marburg, Germany
| | | | | | - Maria L Torres-Duran
- Pneumology Department, Hospital Álvaro Cunqueiro, AS Vigo, Spain.,Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain
| | - Alice M Turner
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d´Hebron/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| |
Collapse
|
16
|
Núñez A, Belmonte I, Miranda E, Barrecheguren M, Farago G, Loeb E, Pons M, Rodríguez-Frías F, Gabriel-Medina P, Rodríguez E, Genescà J, Miravitlles M, Esquinas C. Association between circulating alpha-1 antitrypsin polymers and lung and liver disease. Respir Res 2021; 22:244. [PMID: 34526035 PMCID: PMC8442448 DOI: 10.1186/s12931-021-01842-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is considered one of the most common genetic diseases and is characterised by the misfolding and polymerisation of the alpha-1 antitrypsin (AAT) protein within hepatocytes. The relevance of circulating polymers (CP) of AAT in the pathogenesis of lung and liver disease is not completely understood. Therefore, the main objective of our study was to determine whether there is an association between the levels of CP of AAT and the severity of lung and liver disease. METHOD This was a cross-sectional study in patients with different phenotypes of AATD and controls. To quantify CP, a sandwich ELISA was performed using the 2C1 monoclonal antibody against AAT polymers. Sociodemographic data, clinical characteristics, and liver and lung parameters were collected. RESULTS A cohort of 70 patients was recruited: 32 Pi*ZZ (11 on augmentation therapy); 29 Z-heterozygous; 9 with other genotypes. CP were compared with a control group of 47 individuals (35 Pi*MM and 12 Pi*MS). ZZ patients had the highest concentrations of CP (p < 0.001) followed by Z heterozygous. The control group and patients with Pi*SS and Pi*SI had the lowest CP concentrations. Pi*ZZ also had higher levels of liver stiffness measurements (LSM) than the remaining AATD patients. Among patients with one or two Z alleles, two patients with lung and liver impairment showed the highest concentrations of CP (47.5 µg/mL), followed by those with only liver abnormality (n = 6, CP = 34 µg/mL), only lung (n = 18, CP = 26.5 µg/mL) and no abnormalities (n = 23, CP = 14.3 µg/mL). Differences were highly significant (p = 0.004). CONCLUSIONS Non-augmented Pi*ZZ and Z-patients with impaired lung function and increased liver stiffness presented higher levels of CP than other clinical phenotypes. Therefore, CP may help to identify patients more at risk of developing lung and liver disease and may provide some insight into the mechanisms of disease.
Collapse
Affiliation(s)
- Alexa Núñez
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Irene Belmonte
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Elena Miranda
- Department of Biology and Biotechnologies, 'Charles Darwin' and Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Georgina Farago
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Eduardo Loeb
- Pneumology Department, Teknon Medical Center, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Department of Clinical Biochemistry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBEREHD), Barcelona, Spain
- Clinical Biochemistry Research Group/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pablo Gabriel-Medina
- Department of Clinical Biochemistry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Esther Rodríguez
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Joan Genescà
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBEREHD), Barcelona, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| | - Cristina Esquinas
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
17
|
Matamala N, Lara B, Gómez-Mariano G, Martínez S, Vázquez-Domínguez I, Otero-Sobrino Á, Muñoz-Callejas A, Sánchez E, Esquinas C, Bustamante A, Cadenas S, Curi S, Lázaro L, Martínez MT, Rodríguez E, Miravitlles M, Torres-Duran M, Herrero I, Michel FJ, Castillo S, Hernández-Pérez JM, Blanco I, Casas F, Martínez-Delgado B. miR-320c Regulates SERPINA1 Expression and Is Induced in Patients With Pulmonary Disease. Arch Bronconeumol 2021; 57:457-463. [PMID: 35698951 DOI: 10.1016/j.arbr.2020.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/11/2020] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.
Collapse
Affiliation(s)
- Nerea Matamala
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz Lara
- Respiratory Medicine Department, Coventry University Hospital, Coventry, UK
| | - Gema Gómez-Mariano
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Selene Martínez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Irene Vázquez-Domínguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Álvaro Otero-Sobrino
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Esquinas
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain; Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, Spain
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Spain
| | - Sergio Curi
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Lourdes Lázaro
- Servicio de Neumología, Complejo Asistencial Universitario de Burgos, Spain
| | | | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - María Torres-Duran
- Servicio de Neumología, Hospital Álvaro Cunqueiro, EOXI Vigo, Pneumovigo I+i, IIS Galicia Sur, Spain
| | - Inés Herrero
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Silvia Castillo
- Unidad de Neumología infantil y Fibrosis quística, Hospital Clínico Universitario de Valencia, Spain
| | | | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain
| | - Francisco Casas
- Servicio de Neumología, Hospital Universitario San Cecilio, Granada, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
18
|
Jardim JR, Casas-Maldonado F, Fernandes FLA, Castellano MVCDO, Torres-Durán M, Miravitlles M. Update on and future perspectives for the diagnosis of alpha-1 antitrypsin deficiency in Brazil. J Bras Pneumol 2021; 47:e20200380. [PMID: 34076174 PMCID: PMC8332724 DOI: 10.36416/1806-3756/e20200380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/25/2021] [Indexed: 12/05/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disorder caused by a mutation in the SERPINA1 gene, which encodes the protease inhibitor alpha-1 antitrypsin (AAT). Severe AATD predisposes individuals to COPD and liver disease. Early diagnosis is essential for implementing preventive measures and limiting the disease burden. Although national and international guidelines for the diagnosis and management of AATD have been available for 20 years, more than 85% of cases go undiagnosed and therefore untreated. In Brazil, reasons for the underdiagnosis of AATD include a lack of awareness of the condition among physicians, a racially diverse population, serum AAT levels being assessed in a limited number of individuals, and lack of convenient diagnostic tools. The diagnosis of AATD is based on laboratory test results. The standard diagnostic approach involves the assessment of serum AAT levels, followed by phenotyping, genotyping, gene sequencing, or combinations of those, to detect the specific mutation. Over the past 10 years, new techniques have been developed, offering a rapid, minimally invasive, reliable alternative to traditional testing methods. One such test available in Brazil is the A1AT Genotyping Test, which simultaneously analyzes the 14 most prevalent AATD mutations, using DNA extracted from a buccal swab or dried blood spot. Such advances may contribute to overcoming the problem of underdiagnosis in Brazil and elsewhere, as well as being likely to increase the rate detection of AATD and therefore mitigate the harmful effects of delayed diagnosis.
Collapse
Affiliation(s)
- José R Jardim
- . Centro de Reabilitação Pulmonar, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo (SP) Brasil
| | | | - Frederico Leon Arrabal Fernandes
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | - María Torres-Durán
- . Departamento de Neumología, Hospital Álvaro Cunqueiro, Vigo, España
- . Instituto de Investigación Sanitaria Galicia Sur - IISGS - Vigo, España
| | - Marc Miravitlles
- . Departamento de Neumología, Hospital Universitario Vall d'Hebron, Barcelona, España
- . Vall d'Hebron Institut de Recerca - VHIR - Hospital Universitario Vall d'Hebron Barcelona, Barcelona, España
- . CIBER de Enfermedades Respiratorias - CIBERES - Barcelona, España
| |
Collapse
|
19
|
Barjaktarevic I, Miravitlles M. Alpha-1 antitrypsin (AAT) augmentation therapy in individuals with the PI*MZ genotype: a pro/con debate on a working hypothesis. BMC Pulm Med 2021; 21:99. [PMID: 33757485 PMCID: PMC7989144 DOI: 10.1186/s12890-021-01466-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a significantly under-diagnosed genetic condition caused by reduced levels and/or functionality of alpha-1 antitrypsin (AAT), predisposing individuals to lung, liver or other systemic diseases. The management of individuals with the PI*MZ genotype, characterized by mild or moderate AAT deficiency, is less clear than of those with the most common severe deficiency genotype (PI*ZZ). Recent genetic data suggest that the PI*MZ genotype may be significantly more prevalent than currently thought. The only specific treatment for lung disease associated with severe AATD is the intravenous infusion of AAT augmentation therapy, which has been shown to slow disease progression in PI*ZZ individuals. There is no specific evidence for the clinical benefit of AAT therapy in PI*MZ individuals, and the risk of emphysema development in this group remains controversial. As such, current guidelines do not support the use of AAT augmentation in PI*MZ individuals. Here, we discuss the limited data on the PI*MZ genotype and offer pro and con perspectives on pursuing an AAT-specific therapeutic strategy in PI*MZ individuals with lung disease. Ultimately, further research to demonstrate the safety, risk/benefit balance and efficacy of AAT therapy in PI*MZ individuals is needed.
Collapse
Affiliation(s)
- Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall D'Hebron, Vall D'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
20
|
Quinn M, Ellis P, Pye A, Turner AM. Obstacles to Early Diagnosis and Treatment of Alpha-1 Antitrypsin Deficiency: Current Perspectives. Ther Clin Risk Manag 2020; 16:1243-1255. [PMID: 33364772 PMCID: PMC7751439 DOI: 10.2147/tcrm.s234377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
This review summarizes the current research and outlooks regarding the obstacles to diagnosing and treating early alpha-1-antitrypsin deficiency (AATD). It draws on prior systematic reviews and expert surveys to discover precisely what difficulties exist in early diagnosis and treatment of AATD and elucidate potential solutions to ease these difficulties. The perceived rarity of AATD may translate to a condition poorly understood by primary care physicians, and even many respiratory physicians, which results in opportunities for diagnosis being missed, especially in mild or asymptomatic patients. There are diagnostic techniques involving biomarkers and home testing methods which could improve the rate of early diagnosis. With respect to treatment, AATD involves treating two separate pathologies, lung disease and liver disease. The only specific AATD treatment, augmentation therapy, has proven ability in treating lung disease but not liver disease. Alpha-1-antitrypsin (AAT) synthesized in the liver can form damaging polymers that also result in reduced circulating AAT levels and, whilst liver transplantation is used to effectively treat AATD, it is inappropriate in early disease. Novel therapeutic areas such as gene editing and increasing autophagy are therefore being researched as future treatments. Ultimately, diagnosis and treatment are intrinsically linked in AATD, with earlier diagnosis leading to better treatment options and thus better patient outcomes.
Collapse
Affiliation(s)
- Mark Quinn
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Paul Ellis
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Anita Pye
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK.,University Hospitals Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Belmonte I, Nuñez A, Barrecheguren M, Esquinas C, Pons M, López-Martínez RM, Ruiz G, Blanco-Grau A, Ferrer R, Genescà J, Miravitlles M, Rodríguez-Frías F. Trends in Diagnosis of Alpha-1 Antitrypsin Deficiency Between 2015 and 2019 in a Reference Laboratory. Int J Chron Obstruct Pulmon Dis 2020; 15:2421-2431. [PMID: 33116457 PMCID: PMC7548232 DOI: 10.2147/copd.s269641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Background Alpha-1 antitrypsin deficiency (AATD) remains largely underdiagnosed despite recommendations of healthcare institutions and programmes designed to increase awareness. The objective was to analyse the trends in AATD diagnosis during the last 5 years in a Spanish AATD reference laboratory. Methods This was a retrospective revision of all alpha-1 antitrypsin (AAT) determinations undertaken in our laboratory from 2015 to 2019. We analysed the number of AAT determinations performed and described the characteristics of the individuals tested, as well as the medical specialties and the reasons for requesting AAT determination. Results A total of 3507 determinations were performed, of which 5.5% corresponded to children. A significant increase in the number of AAT determinations was observed from 349 in 2015 to 872 in 2019. Among the samples, 57.6% carried an intermediate AATD (50-119 mg/dL) and 2.4% severe deficiency (<50 mg/dL). The most frequent phenotype in severe AATD individuals was PI*ZZ (78.5%), and aminotransferase levels were above normal in around 43% of children and 30% of adults. Respiratory specialists requested the highest number of AAT determinations (31.5%) followed by digestive diseases and internal medicine (27.5%) and primary care physicians (19.7%). The main reason for AAT determination in severe AATD adults was chronic obstructive pulmonary disease (41.7%), but reasons for requesting AAT determination were not reported in up to 41.7% of adults and 58.3% of children. Conclusion There is an increase in the frequency of AATD testing despite the rate of AAT determination remaining low. Awareness about AAT is probably increasing, but the reason for testing is not always clear.
Collapse
Affiliation(s)
- Irene Belmonte
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès). Barcelona, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Esquinas
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron; Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rosa M López-Martínez
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gerard Ruiz
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Albert Blanco-Grau
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roser Ferrer
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joan Genescà
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron; Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
22
|
Lopez-Campos JL, Casas-Maldonado F, Torres-Duran M, Medina-Gonzálvez A, Rodriguez-Fidalgo ML, Carrascosa I, Calle M, Osaba L, Rapun N, Drobnic E, Miravitlles M. Results of a Diagnostic Procedure Based on Multiplex Technology on Dried Blood Spots and Buccal Swabs for Subjects With Suspected Alpha1 Antitrypsin Deficiency. Arch Bronconeumol 2020; 57:42-50. [PMID: 32680720 DOI: 10.1016/j.arbres.2020.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The objective of this analysis was the evaluation of a new national circuit used for diagnosing alpha1 antitrypsin deficiency (AATD) based on multiplex technology using online registration and mail posted samples from dried blood spots (DBS) and buccal swabs. METHODS This is an observational, ongoing study conducted in Spain since March 2018. Samples are coded on a web platform and sent by postal mail to the central laboratory. Allele-specific genotyping for the 14 most common mutations was done with the Luminex 200 Instrument System. Gene sequencing was done if none of the mutations were found and the AAT serum level was <60mg/dl, or by request from the clinician in charge. RESULTS At the time of the present report, 5803 (92.9%) samples were processed, 4984 (85.9%) from buccal swab and 819 (14.1%) from DBS. The prevalence of the frequent allele combinations were: MS 19.0%, MZ 14.4%, SS 2.9%, SZ 3.7%, and ZZ: 1.4%. Globally, Z carriers represented 20.0% and S carriers 26.6% of this population, with differences seen between regions. 209 (3.6%) were identified carrying rare alleles, 12 (0.2%) carrying null alleles and 14 (0.3%) new mutations were described. Respiratory diseases other than COPD, including poorly controlled asthma or bronchiectasis, also presented AATD mutations. CONCLUSIONS The availability of a diagnostic system based on the simultaneous testing of 14 genetic variants from buccal swabs or DBS sent by postal mail and with web registration has proven to be useful, and the system can improve the timely diagnosis of AATD.
Collapse
Affiliation(s)
- Jose Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain; CIBER de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain.
| | - Francisco Casas-Maldonado
- Servicio de Neumología. Hospital Universitario San Cecilio. Departamento de Medicina, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Maria Torres-Duran
- Servicio de Neumología. Hospital Álvaro Cunqueiro. NeumoVigo I+i Research Group, IIS Galicia Sur, Vigo, Spain
| | | | | | - Ines Carrascosa
- Servicio de Neumología. Hospital Urduliz-OSI Uribe, Vizcaya, Spain
| | - Myriam Calle
- Servicio de Neumología, Hospital Clínico de San Carlos. Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Lourdes Osaba
- Progenika Biopharma, a Grifols Company, Derio, Vizcaya, Spain
| | - Noelia Rapun
- Progenika Biopharma, a Grifols Company, Derio, Vizcaya, Spain
| | | | - Marc Miravitlles
- CIBER de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain; Servicio de Neumología. Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
23
|
McElvaney GN, Sandhaus RA, Miravitlles M, Turino GM, Seersholm N, Wencker M, Stockley RA. Clinical considerations in individuals with α 1-antitrypsin PI*SZ genotype. Eur Respir J 2020; 55:13993003.02410-2019. [PMID: 32165400 PMCID: PMC7301289 DOI: 10.1183/13993003.02410-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
α1-Antitrypsin deficiency (AATD), characterised by reduced levels or functionality of α1-antitrypsin (AAT), is a significantly underdiagnosed genetic condition that predisposes individuals to lung and liver disease. Most of the available data on AATD are based on the most common, severe deficiency genotype (PI*ZZ); therefore, treatment and monitoring requirements for individuals with the PI*SZ genotype, which is associated with a less severe AATD, are not as clear. Recent genetic data suggest the PI*SZ genotype may be significantly more prevalent than currently thought, due in part to less frequent identification in the clinic and less frequent reporting in registries. Intravenous AAT therapy, the only specific treatment for patients with AATD, has been shown to slow disease progression in PI*ZZ individuals; however, there is no specific evidence for AAT therapy in PI*SZ individuals, and it remains unclear whether AAT therapy should be considered in these patients. This narrative review evaluates the available data on the PI*SZ genotype, including genetic prevalence, the age of diagnosis and development of respiratory symptoms compared with PI*ZZ individuals, and the impact of factors such as index versus non-index identification and smoking history. In addition, the relevance of the putative 11 µM “protective threshold” for AAT therapy and the risk of liver disease in PI*SZ individuals is explored. The purpose of this review is to identify open research questions in this area, with the aim of optimising the future identification and management of PI*SZ individuals. Individuals with α1-antitrypsin (AAT) PI*SZ genotype appear to have an increased risk for lung and liver disease, although definitive evidence is lacking; smoking is a major risk factor for lung disease. The role of AAT therapy requires further study.http://bit.ly/2TxxFD0
Collapse
Affiliation(s)
- Gerard N McElvaney
- Dept of Respiratory Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert A Sandhaus
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Marc Miravitlles
- Pneumology Dept, Vall d'Hebron University Hospital/Vall d'Hebron Research Institute (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Gerard M Turino
- Dept of Medicine, Mt Sinai-St Luke's-Roosevelt Hospital, New York, NY, USA
| | - Niels Seersholm
- Dept of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark
| | | | - Robert A Stockley
- Lung Investigation Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
24
|
Matamala N, Lara B, Gómez-Mariano G, Martínez S, Vázquez-Domínguez I, Otero-Sobrino Á, Muñoz-Callejas A, Sánchez E, Esquinas C, Bustamante A, Cadenas S, Curi S, Lázaro L, Martínez MT, Rodríguez E, Miravitlles M, Torres-Duran M, Herrero I, Michel FJ, Castillo S, Hernández-Pérez JM, Blanco I, Casas F, Martínez-Delgado B. miR-320c Regulates SERPINA1 Expression and Is Induced in Patients With Pulmonary Disease. Arch Bronconeumol 2020; 57:S0300-2896(20)30084-3. [PMID: 32439252 DOI: 10.1016/j.arbres.2020.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.
Collapse
Affiliation(s)
- Nerea Matamala
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz Lara
- Respiratory Medicine Department, Coventry University Hospital, Coventry, UK
| | - Gema Gómez-Mariano
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Selene Martínez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Irene Vázquez-Domínguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Álvaro Otero-Sobrino
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Esquinas
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain; Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, Spain
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Spain
| | - Sergio Curi
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Lourdes Lázaro
- Servicio de Neumología, Complejo Asistencial Universitario de Burgos, Spain
| | | | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - María Torres-Duran
- Servicio de Neumología, Hospital Álvaro Cunqueiro, EOXI Vigo, Pneumovigo I+i, IIS Galicia Sur, Spain
| | - Inés Herrero
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Silvia Castillo
- Unidad de Neumología infantil y Fibrosis quística, Hospital Clínico Universitario de Valencia, Spain
| | | | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain
| | - Francisco Casas
- Servicio de Neumología, Hospital Universitario San Cecilio, Granada, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
25
|
Knowledge of Rare Respiratory Diseases among Paediatricians and Medical School Students. J Clin Med 2020; 9:jcm9030869. [PMID: 32235794 PMCID: PMC7141530 DOI: 10.3390/jcm9030869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/05/2022] Open
Abstract
Alpha-1-antitrypsin deficiency (AATD) and primary ciliary dyskinesia (PCD) are underdiagnosed rare diseases showing a median diagnostic delay of five to ten years, which has negative effects on patient prognosis. Lack of awareness and education among healthcare professionals involved in the management of these patients have been suggested as possible causes. Our aim was to assess knowledge of these diseases among paediatricians and medical school students to determine which knowledge areas are most deficient. A survey was designed with questions testing fundamental aspects of the diagnosis and treatment of AATD and PCD. A score equal to or greater than 50% of the maximum score was set as the level necessary to ensure a good knowledge of both diseases. Our results indicate a profound lack of knowledge of rare respiratory diseases among paediatric professionals and medical students, suggesting that it is necessary to increase rare respiratory diseases training among all physicians responsible for suspecting and diagnosing them; this will allow early diagnosis and the setup of preventive measures and appropriate early-stage treatment. The first step in closing this knowledge gap could be to include relevant material in the medical syllabus.
Collapse
|
26
|
García Sanz MT, Camba Matos S, González Barcala FJ. Detección del déficit de alfa-1 antitripsina en Atención Primaria. OPEN RESPIRATORY ARCHIVES 2020. [DOI: 10.1016/j.opresp.2019.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Menga G, Fernandez Acquier M, Echazarreta AL, Sorroche PB, Lorenzon MV, Fernández ME, Saez MS. Prevalence of Alpha-1 Antitrypsin Deficiency in COPD Patients in Argentina. The DAAT.AR Study. Arch Bronconeumol 2019; 56:571-577. [PMID: 31889566 DOI: 10.1016/j.arbres.2019.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency (AATD) is still underdiagnosed, despite the recommendation to determine AAT in patients with chronic obstructive pulmonary disease (COPD). OBJECTIVE To estimate the prevalence of AATD in COPD patients adjusted according to the population of the COPD prevalence study in Argentina (EPOC.AR). MATERIAL AND METHODS This was a multicenter prospective cross-sectional study of a population aged≥30 years of age diagnosed with COPD, involving AAT quantification in dry blood spot and subsequent genotyping in subjects with<1.5mg/dL AAT in dry blood spot (<80mg/dL in serum). AAT was defined as the detection of variants ZZ or SZ on genotyping. The EPOC.AR study population was used to calculate local adjusted prevalence. RESULTS We included 3,254 patients (544 with AAT<80mg/dL) with a spirometric diagnosis of COPD. The prevalence of AATD in the total study population was 1.29% (95% CI 0.93-1.74), of which 0.92% (95% CI 0.62-1.31) were Pi*ZZ and 0.37% (95% CI 0.19-0.64) Pi*SZ. The adjusted prevalence of AATD in COPD patients≥40 years of age was 0.83% (95% CI 0.23-2.08). We found that AATD was negatively associated with age (OR 0.94; 95% CI 0.90-0.98; P=.006), smoking habit (OR 0.98; 95% CI 0.96-0.99; P=.009), and FEV1% (OR 0.95; 95% CI 0.91-0.99; P=.015). CONCLUSIONS The prevalence of AATD in the adult population with COPD in Argentina is estimated to be 0.83%, which could represent 17,000 cases in our country.
Collapse
Affiliation(s)
- Guillermo Menga
- Hospital Municipal de Rehabilitación Respiratoria María Ferrer, Buenos Aires, Argentina
| | | | - Andrés L Echazarreta
- Hospital Interzonal Especializado de Agudos y Crónicos San Juan de Dios, La Plata, Argentina
| | | | | | - Martin E Fernández
- Hospital Municipal de Rehabilitación Respiratoria María Ferrer, Buenos Aires, Argentina
| | - María S Saez
- Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Hernández Pérez JM, López Charry CV. [Response to the article prevalence and characteristics of the chronic obstructive pulmonary disease in non smokers]. Aten Primaria 2019; 51:591. [PMID: 31151819 PMCID: PMC6945127 DOI: 10.1016/j.aprim.2019.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/18/2019] [Indexed: 11/17/2022] Open
|
29
|
Montserrat-Capdevila J, Godoy P, Marsal JR, Ortega M, Barbé F, Castañ MT, Seminario MA, Pujol J, Alsedà M. [Prevalence and characteristics of chronic obstructive pulmonary disease in non-smokers]. Aten Primaria 2019; 51:589-590. [PMID: 31230850 PMCID: PMC6945132 DOI: 10.1016/j.aprim.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/09/2019] [Indexed: 12/04/2022] Open
Affiliation(s)
- Josep Montserrat-Capdevila
- Consultorio Local de Bellvís, ABS Pla d'Urgell, Atención Primaria, Institut Català de la Salut, Bellvís, Lleida, España; Institut de Recerca Biomèdica (IRB) de Lleida, Lleida, España; Agència de Salut Pública de Catalunya, Departament de Salut, Lleida, España; Facultat de Medicina, Universitat de Lleida, Lleida, España.
| | - Pere Godoy
- Institut de Recerca Biomèdica (IRB) de Lleida, Lleida, España,Agència de Salut Pública de Catalunya, Departament de Salut, Lleida, España,Facultat de Medicina, Universitat de Lleida, Lleida, España,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, España
| | - Josep Ramon Marsal
- Unitat d’Epidemiologia del Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Barcelona, España
| | - Marta Ortega
- Unitat de Suport a la Recerca Lleida, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, España,Centre d’Atenció Primària Cappont, Direcció d’Atenció Primària (DAP) Lleida, Institut Català de la Salut (ICS), Lleida, España
| | - Ferran Barbé
- Hospital Universitari Arnau de Vilanova, Lleida, España,Grupo de Patología Respiratoria, Institut de Recerca Biomèdica (IRB) de Lleida, Lleida, España,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, España
| | - Maria Teresa Castañ
- Institut de Recerca Biomèdica (IRB) de Lleida, Lleida, España,ABS Eixample, Atención Primaria, Institut Català de la Salut, Lleida, España
| | | | - Jesús Pujol
- Institut de Recerca Biomèdica (IRB) de Lleida, Lleida, España,ABS Balaguer, Atención Primaria, Institut Català de la Salut, Balaguer, Lleida, España
| | - Miquel Alsedà
- Institut de Recerca Biomèdica (IRB) de Lleida, Lleida, España,Agència de Salut Pública de Catalunya, Departament de Salut, Lleida, España,Facultat de Medicina, Universitat de Lleida, Lleida, España
| |
Collapse
|
30
|
Attaway A, Majumdar U, Sandhaus RA, Nowacki AS, Stoller JK. An analysis of the degree of concordance among international guidelines regarding alpha-1 antitrypsin deficiency. Int J Chron Obstruct Pulmon Dis 2019; 14:2089-2101. [PMID: 31564856 PMCID: PMC6734458 DOI: 10.2147/copd.s208591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/01/2019] [Indexed: 11/23/2022] Open
Abstract
Background Practice guidelines (PGs) attempt to standardize practice to optimize care. For uncommon lung diseases like alpha-1 antitrypsin deficiency (AATD), a paucity of definitive studies and geographic variation in prevalence may hamper guideline generation. The current study assembled and assesses the degree of concordance among available PGs regarding AATD. Methods To assess concordance, 15 eligible guidelines focused on AATD were evaluated regarding recommendations surrounding 24 key clinical issues. A Delphi process achieved consensus on ratings for each statement among 3 reviewers. Agreement was quantified as the proportion of guideline comparisons with a matching rating. Results The overall level of agreement was 47% (1190/2520 comparisons). The overall “affirmative agreement percentage” (ie, when guidelines agreed in endorsing a practice), was 42% (501/1190 comparisons). The agreement for individual clinical statements ranged from 26% to 75%. A broad consensus was seen in the recommendation to test all patients with a history of fixed obstruction on pulmonary function testing (either from asthma or COPD). Given that AATD is an under-recognized disease and that diagnosis often occurs at a late stage, the authors are encouraged by this consensus. Where overall the guidelines were less explicit was when to refer to a specialist or AATD center. Deciding on a treatment strategy requires a thorough understanding of the alpha 1 serum level, genotype, pulmonary function testing, and imaging, and therefore the authors feel that all patients would benefit from a specialty referral if the diagnosis of AATD is being considered. Conclusion Available guidelines regarding AATD frequently disagreed in management recommendations. Possible explanations for discordance include differences in regional prevalence, availability of augmentation therapy, and insurance environments. Attempts to harmonize the various guidelines by empaneling a broadly representative international group of disease experts should be considered for AATD. Similar comparisons among guidelines for other diseases are recommended.
Collapse
Affiliation(s)
- Amy Attaway
- Cleveland Clinic Lerner School of Medicine, Cleveland, OH, USA.,Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Uddalak Majumdar
- Cleveland Clinic Lerner School of Medicine, Cleveland, OH, USA.,Department of Hospital Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Robert A Sandhaus
- Alpha-1 Antitrypsin Deficiency Program, National Jewish Health, Denver, CO, USA.,Alpha-1 Foundation, Coral Gables, FL, USA
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James K Stoller
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.,Education Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
31
|
Lopes AP, Mineiro MA, Costa F, Gomes J, Santos C, Antunes C, Maia D, Melo R, Canotilho M, Magalhães E, Vicente I, Valente C, Gonçalves BG, Conde B, Guimarães C, Sousa C, Amado J, Brandão ME, Sucena M, Oliveira MJ, Seixas S, Teixeira V, Telo L. Portuguese consensus document for the management of alpha-1-antitrypsin deficiency. Pulmonology 2019; 24 Suppl 1:1-21. [PMID: 30473034 DOI: 10.1016/j.pulmoe.2018.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023] Open
Abstract
Alpha-1-antitrypsin deficiency (AATD) is a genetic autosomal codominant disorder caused by mutations in SERPINA1 gene. It is one of the most prevalent genetic disorders, although it remains underdiagnosed. Whereas at international level there are several areas of consensus on this disorder, in Portugal, inter-hospital heterogeneity in clinical practice and resources available have been adding difficulties in reaching a diagnosis and in making therapeutic decisions in this group of patients. This raised a need to draft a document expressing a national consensus for AATD. To this end, a group of experts in this field was created within the Portuguese Pulmonology Society - Study group on AATD, in order to elaborate the current manuscript. The authors reviewed the existing literature and provide here general guidance and extensive recommendations for the diagnosis and management of AATD that can be adopted by Portuguese clinicians from different areas of Medicine. This article is part of a supplement entitled "Portuguese consensus document for the management of alpha-1-antitrypsin deficiency" which is sponsored by Sociedade Portuguesa de Pneumologia.
Collapse
Affiliation(s)
- A P Lopes
- Centro Hospitalar e Universitário de Coimbra (HUC); Alpha-1-antitrypsin deficiency study group coordinator.
| | | | - F Costa
- Centro Hospitalar e Universitário de Coimbra (HG)
| | | | | | | | - D Maia
- Centro Hospital Lisboa Central
| | - R Melo
- Hospital Prof. Doutor Fernando da Fonseca
| | | | | | | | | | | | - B Conde
- Centro Hospitalar de Trás os Montes e Alto Douro
| | | | - C Sousa
- Centro Hospitalar de São João
| | - J Amado
- Unidade Local de Saúde de Matosinhos
| | - M E Brandão
- Centro Hospitalar de Trás os Montes e Alto Douro
| | | | | | - S Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S); Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)
| | - V Teixeira
- Serviço de Saúde da Região Autónoma da Madeira (SESARAM)
| | - L Telo
- Centro Hospitalar Lisboa Norte
| |
Collapse
|
32
|
Horváth I, Canotilho M, Chlumský J, Chorostowska-Wynimko J, Corda L, Derom E, Ficker JH, Kneussl M, Miravitlles M, Sucena M, Thabut G, Turner AM, van ’t Wout E, McElvaney NG. Diagnosis and management of α 1-antitrypsin deficiency in Europe: an expert survey. ERJ Open Res 2019; 5:00171-2018. [PMID: 30863774 PMCID: PMC6409083 DOI: 10.1183/23120541.00171-2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Despite recent improvements, α1-antitrypsin deficiency (AATD) remains a rarely diagnosed and treated condition. To assess the variability of AATD diagnosis/treatment in Europe, and to evaluate clinicians' views on methods to optimise management, specialist AATD clinicians were invited to complete a web-based survey. Surveys were completed by 15 physicians from 14 centres in 13 European countries. All respondents perceived the AATD diagnosis rate to be low in their country; 77% of physicians believed that ∼15% of cases were diagnosed. Low awareness was perceived as the greatest barrier to diagnosis. Spirometry was considered more practical than quantitative computed tomography (QCT) for monitoring AATD patients in clinical practice; QCT was considered more useful in trials. AAT therapy provision was reported to be highly variable: France and Germany were reported to treat the highest proportion (∼60%) of diagnosed patients, in contrast to the UK and Hungary, where virtually no patients receive AAT therapy. Most clinicians supported self-administration and extended dosing intervals to improve convenience of AAT therapy. This survey indicates that AATD diagnosis and management are highly heterogeneous in Europe; European cooperation is essential to generate data to support access to AAT therapy. Improving convenience of AAT therapy is an ongoing objective.
Collapse
Affiliation(s)
- Ildikó Horváth
- Dept of Pulmonology, National Koranyi Institute for Pulmonology in Budapest, Budapest, Hungary
| | - Maria Canotilho
- Dept of Pneumology, Hospital of Santo Andre – Centro Hospitalar de Leiria, Leiria, Portugal
| | - Jan Chlumský
- Dept of Pneumology, Thomayer Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Joanna Chorostowska-Wynimko
- Dept of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Luciano Corda
- Dept of Internal Medicine, Respiratory Disease Unit, Spedali Civili, Brescia, Italy
| | - Eric Derom
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Joachim H. Ficker
- 3rd Medical Dept, Nuremberg General Hospital/Paracelsus Medical University, Nuremberg, Germany
| | - Meinhard Kneussl
- Dept of Internal Medicine II and Pneumology at Wilhelminenspital Wien, Vienna, Austria
| | - Marc Miravitlles
- Pulmonology Dept, University Hospital Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Maria Sucena
- Pulmonology Dept, Centro Hospitalar de São João, Porto, Portugal
| | - Gabriel Thabut
- Dept of Pneumology and Lung Transplantation, Bichat Hospital, Paris, France
| | - Alice M. Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Emily van ’t Wout
- Leiden University Medical Centre, Dept of Pulmonology, Leiden, Netherlands
| | - N. Gerard McElvaney
- Dept of Respiratory Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
33
|
da Costa CH, Noronha Filho AJ, Marques E Silva RMF, da Cruz TF, de Oliveira Monteiro V, Pio M, Rufino RL. Alpha 1-antitrypsin deficiency in patients with chronic obstructive pulmonary disease patients: is systematic screening necessary? BMC Res Notes 2019; 12:10. [PMID: 30630519 PMCID: PMC6329068 DOI: 10.1186/s13104-018-4043-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/31/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Alpha-1-antitrypsin deficiency is a relatively prevalent, but under-diagnosed, genetic disease. The objective of this study was to assess whether the systematic screening for alpha-1-antitrypsin deficiency in all patients with chronic obstructive pulmonary disease from a tertiary service has an impact on the number of patients being diagnosed with this condition. RESULTS Chronic obstructive pulmonary disease patients were screened for alpha-1-antitrypsin deficiency using immunonephelometry. The presence of a mutation was confirmed by molecular study of the SERPINA1 gene or by genetic sequencing, as needed. A total of 551 patients with chronic obstructive pulmonary disease were analyzed. Among these, 40 (7.2%) had some genetic mutation, while 11 (2%) had a Pi*ZZ genotype, resulting in severe respiratory illness. The systematic evaluation of chronic obstructive pulmonary disease patients revealed that screening is an effective method to diagnose alpha-1-antitrypsin deficiency. Early diagnosis may facilitate smoking cessation and initiation of treatment to maintain lung function.
Collapse
Affiliation(s)
- Cláudia Henrique da Costa
- Chest Department, State University of Rio de Janeiro (UERJ), Av. Marechal Rondon, 381, São Francisco Xavier, Rio de Janeiro, RJ, 20950-000, Brazil. .,Chest Department, State University of Rio de Janeiro (UERJ), Av. Vinte e Oito de Setembro, 77, Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil.
| | - Arnaldo José Noronha Filho
- Chest Department, State University of Rio de Janeiro (UERJ), Av. Marechal Rondon, 381, São Francisco Xavier, Rio de Janeiro, RJ, 20950-000, Brazil.,Chest Department, State University of Rio de Janeiro (UERJ), Av. Vinte e Oito de Setembro, 77, Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Rosa Maria Fernambel Marques E Silva
- Chest Department, State University of Rio de Janeiro (UERJ), Av. Marechal Rondon, 381, São Francisco Xavier, Rio de Janeiro, RJ, 20950-000, Brazil
| | - Thaís Ferrari da Cruz
- Chest Department, State University of Rio de Janeiro (UERJ), Av. Marechal Rondon, 381, São Francisco Xavier, Rio de Janeiro, RJ, 20950-000, Brazil
| | - Valeria de Oliveira Monteiro
- Chest Department, State University of Rio de Janeiro (UERJ), Av. Marechal Rondon, 381, São Francisco Xavier, Rio de Janeiro, RJ, 20950-000, Brazil
| | - Margareth Pio
- Chest Department, State University of Rio de Janeiro (UERJ), Av. Marechal Rondon, 381, São Francisco Xavier, Rio de Janeiro, RJ, 20950-000, Brazil
| | - Rogério Lopes Rufino
- Chest Department, State University of Rio de Janeiro (UERJ), Av. Marechal Rondon, 381, São Francisco Xavier, Rio de Janeiro, RJ, 20950-000, Brazil.,Chest Department, State University of Rio de Janeiro (UERJ), Av. Vinte e Oito de Setembro, 77, Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil
| |
Collapse
|
34
|
Esquinas C, Miravitlles M. Are There Differences Between the Available Treatments for Emphysema Associated with Alpha-1 Antitrypsin Deficiency? Arch Bronconeumol 2018; 54:451-452. [PMID: 29625713 DOI: 10.1016/j.arbres.2018.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Cristina Esquinas
- Servicio de Neumología, Hospital Universitari Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, España
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, España.
| |
Collapse
|
35
|
Editorial A. Diagnosis and treatment of pulmonarydisease in α1-antitrypsin deficiency: a statement of European Respiratory Society. RUSSIAN PULMONOLOGY 2018; 28:273-295. [DOI: 10.18093/0869-0189-2018-28-3-273-295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Alfa-1-antitrypsin deficiency (AATD) is the most common hereditary disorder in adults. It is associated with an increased risk of developing pulmonary emphysema and liver disease. The lung injury in AATD is closely associated with smoking, but progressive lung disease could occur even in never-smokers. A number of individuals with AATD remain undiagnosed and therefore do not receive appropriate care and treatment. The most recent international document on AATD was the joint statement of the American Thoracic Society and the European Respiratory Society published in 2003. Thereafter, there has been a continuous development of novel, more accurate and less expensive genetic diagnostic methods. Furthermore, new outcome parameters have been developed and validated for use in clinical trials and a new series of observational and randomized clinical trials have provided more evidence concerning the efficacy and safety of augmentation therapy, the only specific treatment available for the pulmonary disease associated with AATD. As AATD is a rare disease, it is important to createnational and international registries and to collect information prospectively about the natural history of the disease. Management of AATD patients must be supervised by national or regional expert centres and inequalities in access to therapies across Europe should be addressed.
Collapse
|
36
|
Torres-Durán M, Lopez-Campos JL, Barrecheguren M, Miravitlles M, Martinez-Delgado B, Castillo S, Escribano A, Baloira A, Navarro-Garcia MM, Pellicer D, Bañuls L, Magallón M, Casas F, Dasí F. Alpha-1 antitrypsin deficiency: outstanding questions and future directions. Orphanet J Rare Dis 2018; 13:114. [PMID: 29996870 PMCID: PMC6042212 DOI: 10.1186/s13023-018-0856-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background Alpha-1 antitrypsin deficiency (AATD) is a rare hereditary condition that leads to decreased circulating alpha-1 antitrypsin (AAT) levels, significantly increasing the risk of serious lung and/or liver disease in children and adults, in which some aspects remain unresolved. Methods In this review, we summarise and update current knowledge on alpha-1 antitrypsin deficiency in order to identify and discuss areas of controversy and formulate questions that need further research. Results 1) AATD is a highly underdiagnosed condition. Over 120,000 European individuals are estimated to have severe AATD and more than 90% of them are underdiagnosed. Conclusions 2) Several clinical and etiological aspects of the disease are yet to be resolved. New strategies for early detection and biomarkers for patient outcome prediction are needed to reduce morbidity and mortality in these patients; 3) Augmentation therapy is the only specific approved therapy that has shown clinical efficacy in delaying the progression of emphysema. Regrettably, some countries reject registration and reimbursement for this treatment because of the lack of larger randomised, placebo-controlled trials. 4) Alternative strategies are currently being investigated, including the use of gene therapy or induced pluripotent stem cells, and non-augmentation strategies to prevent AAT polymerisation inside hepatocytes.
Collapse
Affiliation(s)
- María Torres-Durán
- Pulmonary Department, Hospital Álvaro Cunqueiro EOXI, Vigo, Spain.,NeumoVigo I+i Research Group, IIS Galicia Sur, Vigo, Spain
| | - José Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Sevilla, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Miriam Barrecheguren
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Marc Miravitlles
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Beatriz Martinez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Silvia Castillo
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Amparo Escribano
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Adolfo Baloira
- Pneumology Department, Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - María Mercedes Navarro-Garcia
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Daniel Pellicer
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Lucía Bañuls
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - María Magallón
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Francisco Casas
- Pneumology Department, Hospital Universitario San Cecilio, Granada, Spain
| | - Francisco Dasí
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain. .,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain.
| |
Collapse
|
37
|
Barrecheguren M, Miravitlles M. Augmentation therapy for emphysema due to alpha-1 antitrypsin deficiency: Pro. Arch Bronconeumol 2018; 54:363-364. [PMID: 29555450 DOI: 10.1016/j.arbres.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 02/05/2023]
Affiliation(s)
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d́Hebron, Barcelona, España; CIBER de Enfermedades Respiratorias (CIBERES).
| |
Collapse
|
38
|
Nuñez A, Barrecheguren M, Rodríguez E, Miravitlles M, Esquinas C. Diagnosis of alpha1-antitrypsin deficiency not just in severe COPD. Pulmonology 2018; 24:351-353. [PMID: 29921528 DOI: 10.1016/j.pulmoe.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/25/2018] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
Alpha1-antitrypsin deficiency (AATD) is a well known genetic risk factor for pulmonary disease and is the most frequent hereditary disease diagnosed in adults. Despite being one of the most common hereditary diseases, AATD remains under-diagnosed because of its variable clinical presentation and the poor knowledge of this disease by physicians. With the aim of identifying clinical differences that could influence early diagnosis, we compared two groups of six AATD Pi*ZZ patients with different lung function severity and clinical expression at diagnosis. On comparing the two groups, we observed a younger mean age at diagnosis and more exacerbations in the severe group, but the percentage of smokers did not statistically differ between the two groups. Our results suggest that AATD continues being a disease suspected on younger patients with a worse lung function. In addition these findings confirm the clinical variability of the disease and that there are still unknown factors that contribute to its development. Therefore, early diagnosis may modify the prognosis of this disease.
Collapse
Affiliation(s)
- A Nuñez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - M Barrecheguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - E Rodríguez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - M Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - C Esquinas
- Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
39
|
McCarthy C, Lara Gallego B, Trapnell BC, McCormack FX. Epidemiology of Rare Lung Diseases: The Challenges and Opportunities to Improve Research and Knowledge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1031:419-442. [PMID: 29214586 DOI: 10.1007/978-3-319-67144-4_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rare lung diseases encompass a broad spectrum of conditions and affect an estimated 1.2-2.5 million people in North America and 1.5-3 million people in Europe. While individual rare lung diseases affect less than 1 in 2000 individuals, collectively they have a significant impact upon the population at large. Hence it is vital to understand firstly the epidemiology and subsequently the pathogenesis and clinical course of these disorders. Through a greater understanding of these aspects of disease, progress can be made in reducing symptoms, containing healthcare costs and utilizing resources efficiently. Furthermore, a greater understanding of the pathobiology of rare lung diseases can inform both the pathogenesis and management of more common pulmonary disorders.In this chapter we review how epidemiological approaches and the utilization of patient registries has improved the knowledge and management of rare lung diseases. We further focus on the epidemiology of several of the more widely known rare pulmonary disorders, including idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF) and alpha-1 antitrypsin deficiency (AATD). To conclude we describe how patient advocacy groups and foundations have driven advances in research and management of ultra-rare lung diseases, namely, the major strides made in the management and understanding of lymphangioleiomyomatosis (LAM) and pulmonary alveolar proteinosis (PAP).We conclude that the models used to study some of the rarest of diseases may be successfully adopted by other rare and common disease communities, leading to improved care and the possibility of novel therapeutic options.
Collapse
Affiliation(s)
- Cormac McCarthy
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, 45267-0564, USA. .,Translational Pulmonary Science Center Cincinnati Children's Hospital, 3333 Burnet Avenue, CCRF S4621, 45229-3039, Cincinnati, OH, USA. .,Rare Lung Diseases Clinical (RLDC), Cincinnati, OH, USA.
| | - Beatriz Lara Gallego
- Respiratory Medicine Department, Coventry University Hospital, Third Floor, East wing. Clifford Bridge Road, Coventry, CV2 2DX, Warwickshire, UK
| | - Bruce C Trapnell
- Translational Pulmonary Science Center Cincinnati Children's Hospital, 3333 Burnet Avenue, CCRF S4621, 45229-3039, Cincinnati, OH, USA.,Rare Lung Diseases Clinical (RLDC), Cincinnati, OH, USA.,Medicine and Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, CCRF R4029, 45229-3039, Cincinnati, OH, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, 45267-0564, USA
| |
Collapse
|
40
|
Matamala N, Lara B, Gomez-Mariano G, Martínez S, Retana D, Fernandez T, Silvestre RA, Belmonte I, Rodriguez-Frias F, Vilar M, Sáez R, Iturbe I, Castillo S, Molina-Molina M, Texido A, Tirado-Conde G, Lopez-Campos JL, Posada M, Blanco I, Janciauskiene S, Martinez-Delgado B. Characterization of Novel Missense Variants of SERPINA1 Gene Causing Alpha-1 Antitrypsin Deficiency. Am J Respir Cell Mol Biol 2018; 58:706-716. [PMID: 29232161 DOI: 10.1165/rcmb.2017-0179oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The SERPINA1 gene is highly polymorphic, with more than 100 variants described in databases. SERPINA1 encodes the alpha-1 antitrypsin (AAT) protein, and severe deficiency of AAT is a major contributor to pulmonary emphysema and liver diseases. In Spanish patients with AAT deficiency, we identified seven new variants of the SERPINA1 gene involving amino acid substitutions in different exons: PiSDonosti (S+Ser14Phe), PiTijarafe (Ile50Asn), PiSevilla (Ala58Asp), PiCadiz (Glu151Lys), PiTarragona (Phe227Cys), PiPuerto Real (Thr249Ala), and PiValencia (Lys328Glu). We examined the characteristics of these variants and the putative association with the disease. Mutant proteins were overexpressed in HEK293T cells, and AAT expression, polymerization, degradation, and secretion, as well as antielastase activity, were analyzed by periodic acid-Schiff staining, Western blotting, pulse-chase, and elastase inhibition assays. When overexpressed, S+S14F, I50N, A58D, F227C, and T249A variants formed intracellular polymers and did not secrete AAT protein. Both the E151K and K328E variants secreted AAT protein and did not form polymers, although K328E showed intracellular retention and reduced antielastase activity. We conclude that deficient variants may be more frequent than previously thought and that their discovery is possible only by the complete sequencing of the gene and subsequent functional characterization. Better knowledge of SERPINA1 variants would improve diagnosis and management of individuals with AAT deficiency.
Collapse
Affiliation(s)
- Nerea Matamala
- 1 Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER)
| | - Beatriz Lara
- 2 Respiratory Medicine Department, Coventry University Hospital, Coventry, United Kingdom
| | - Gema Gomez-Mariano
- 1 Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER)
| | - Selene Martínez
- 1 Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER)
| | - Diana Retana
- 1 Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER)
| | - Taiomara Fernandez
- 1 Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER)
| | | | - Irene Belmonte
- 4 Biochemistry Department, Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Marçal Vilar
- 5 Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas (CSIC), Valencia, Spain
| | - Raquel Sáez
- 6 Immunology and Genetics, Hospital Donosti, San Sebastián, Spain
| | - Igor Iturbe
- 7 Pneumology, Hospital de Zumárraga, Gipuzkoa, Spain
| | | | - María Molina-Molina
- 9 Pulmonary Medicine, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospital de Llobregat, Barcelona, Spain
| | - Anna Texido
- 10 Pneumology, Hospital Universitari Sant Joan de Reus, Reus (Tarragona), Spain
| | - Gema Tirado-Conde
- 11 Complejo Hospitalario Universitario Granada, Parque Tecnológico de las Ciencias de la Salud, Granada, Spain
| | - Jose Luis Lopez-Campos
- 13 Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), and
- 12 Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/Universidad de Sevilla, Sevilla, Spain
| | - Manuel Posada
- 1 Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER)
- 14 Consorcio Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ignacio Blanco
- 15 Spanish Registry of Patients with Alpha-1 Antitrypsin Deficiency (REDAAT), Spanish Society of Pneumology (SEPAR), Fundación Española de Pulmón (RESPIRA), Barcelona, Spain
| | - Sabina Janciauskiene
- 16 Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; and
- 17 Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | |
Collapse
|
41
|
Esquinas C, Serreri S, Barrecheguren M, Rodriguez E, Nuñez A, Casas-Maldonado F, Blanco I, Pirina P, Lara B, Miravitlles M. Long-term evolution of lung function in individuals with alpha-1 antitrypsin deficiency from the Spanish registry (REDAAT). Int J Chron Obstruct Pulmon Dis 2018; 13:1001-1007. [PMID: 29615836 PMCID: PMC5870637 DOI: 10.2147/copd.s155226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The clinical course of alpha-1 antitrypsin deficiency (AATD) is very heterogeneous. It is estimated that 60% of individuals with severe AATD (Pi*ZZ) develop emphysema. The main objective of this study was to describe the outcomes of long-term lung function in individuals with AATD-associated emphysema after at least 8 years of follow-up. Materials and methods We performed a retrospective analysis of longitudinal follow-up data of AATD PiZZ patients from the Spanish registry (AATD Spanish Registry [REDAAT]). The main follow-up outcome was the annual rate of decline in forced expiratory volume in 1 second (FEV1) calculated using the FEV1 values at baseline and in the last post-bronchodilator spirometry available. Results One hundred and twenty-two AATD PiZZ patients were analyzed. The median follow-up was 11 years (interquartile range =9–14). The mean FEV1 decline was 28 mL/year (SD=54), with a median of 33 mL/year. Tobacco consumption (β=19.8, p<0.001), previous pneumonia (β=27.8, p=0.026) and higher baseline FEV1% (β=0.798, p=0.016) were independently related to a faster FEV1 decline. Conclusion In this large cohort with a long follow-up, we observed a very variable decline of FEV1. However, the mean FEV1 decline was similar to that observed in large cohorts of smoking-related COPD. Tobacco consumption, previous pneumonia and better lung function at baseline were related to a faster decline in FEV1. These results highlight the importance of early diagnosis and effective treatment.
Collapse
Affiliation(s)
- Cristina Esquinas
- Pneumology Department, University Hospital Vall d'Hebron, Barcelona, Spain.,Public Health, Mental, Maternal and Child Health Nursing Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | | | | | - Esther Rodriguez
- Pneumology Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Alexa Nuñez
- Pneumology Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Ignacio Blanco
- Alpha-1 Antitrypsin Deficiency Spanish Registry (REDAAT), Spanish Society of Pneumology (SEPAR), Barcelona, Spain
| | | | - Beatriz Lara
- Coventry and Warwickshire University Hospital, Coventry, UK
| | - Marc Miravitlles
- Pneumology Department, University Hospital Vall d'Hebron, Barcelona, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Spain
| |
Collapse
|
42
|
Miravitlles M, Dirksen A, Ferrarotti I, Koblizek V, Lange P, Mahadeva R, McElvaney NG, Parr D, Piitulainen E, Roche N, Stolk J, Thabut G, Turner A, Vogelmeier C, Stockley RA. European Respiratory Society statement: diagnosis and treatment of pulmonary disease in α1-antitrypsin deficiency. Eur Respir J 2017; 50:50/5/1700610. [PMID: 29191952 DOI: 10.1183/13993003.00610-2017] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/16/2017] [Indexed: 11/05/2022]
Abstract
α1-antitrypsin deficiency (AATD) is the most common hereditary disorder in adults. It is associated with an increased risk of developing pulmonary emphysema and liver disease. The pulmonary emphysema in AATD is strongly linked to smoking, but even a proportion of never-smokers develop progressive lung disease. A large proportion of individuals affected remain undiagnosed and therefore without access to appropriate care and treatment.The most recent international statement on AATD was published by the American Thoracic Society and the European Respiratory Society in 2003. Since then there has been a continuous development of novel, more accurate and less expensive genetic diagnostic methods. Furthermore, new outcome parameters have been developed and validated for use in clinical trials and a new series of observational and randomised clinical trials have provided more evidence concerning the efficacy and safety of augmentation therapy, the only specific treatment available for the pulmonary disease associated with AATD.As AATD is a rare disease, it is crucial to organise national and international registries and collect information prospectively about the natural history of the disease. Management of AATD patients must be supervised by national or regional expert centres and inequalities in access to therapies across Europe should be addressed.
Collapse
|
43
|
Zhu H, He J, Liu J, Zhang X, Yang F, Liu P, Wang S. Alpha 1-antitrypsin ameliorates ventilator-induced lung injury in rats by inhibiting inflammatory responses and apoptosis. Exp Biol Med (Maywood) 2017; 243:87-95. [PMID: 29096562 DOI: 10.1177/1535370217740852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mechanical ventilation is extensively used to treat patients with lung injury but may result in ventilator-induced lung injury (VILI). The present study investigated the protective effect of alpha 1-antitrypsin (AAT) on VILI. Adult male rats were subjected to sham, ventilation + saline, or ventilation + AAT treatment and lung injuries were evaluated. Peripheral blood and bronchoalveolar lavage fluid (BALF) were obtained to assess systemic and local inflammatory responses, respectively. Mechanical ventilation resulted in lung injury, as evidenced by histological abnormalities as well as elevations in PaO2/FiO2 ratio, the wet-to-dry weight ratio, and the BALF level of proteins. The intravenous administration of AAT significantly improved these parameters of lung function, suggesting a protective role of AAT in VILI. Mechanistically, ventilator-induced inflammation was effectively reduced by AAT, as evidenced by decreases in BALF neutrophil counts, BALF cytokines, and serum adhesion factors. In contrast, anti-inflammatory interleukin-10 in BALF was increased in response to AAT. AAT treatment also inhibited the expression of nuclear factor-κB, Bax, and cleaved caspase-3 while promoting Bcl-2 expression in ventilator-injured lung tissues. AAT treatment can ameliorate VILI by inhibiting inflammatory mediator production and apoptosis. Impact statement Mechanical ventilation has been commonly used to treat patients with lung injury but may result in ventilator-induced lung injury (VILI). Few effective treatment options are currently available to reduce VILI. Alpha 1-antitrypsin (AAT) is an inhibitor of serine protease with anti-inflammatory and antiapoptotic properties, suggesting a possible role in attenuating lung injury. The present study demonstrates that AAT inhibits the development of VILI by modulating inflammation- and apoptosis-related protein expression. Therefore, AAT may be a novel therapeutic agent for acute respiratory distress syndrome patients undergoing mechanical ventilation.
Collapse
Affiliation(s)
- He Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 150081, China
| | - Jianshuai He
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 150081, China
| | - Jia Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 150081, China
| | - Xin Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 150081, China
| | - Fengyun Yang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 150081, China
| | - Pingting Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 150081, China
| | - Shilei Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 150081, China
| |
Collapse
|
44
|
Parr DG, Lara B. Clinical utility of alpha-1 proteinase inhibitor in the management of adult patients with severe alpha-1 antitrypsin deficiency: a review of the current literature. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2149-2162. [PMID: 28769553 PMCID: PMC5529111 DOI: 10.2147/dddt.s105207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Alpha-1 antitrypsin (AAT) functions primarily to inhibit neutrophil elastase, and its deficiency predisposes individuals to the development of chronic obstructive pulmonary disease (COPD). The putative protective serum concentration is generally considered to be above a threshold of 11 μM/L, and therapeutic augmentation of AAT above this value is believed to retard the progression of emphysema. Several AAT preparations, all derived from human donor plasma, have been commercialized since approval by the US Food and Drug Administration (FDA) in 1987. Biochemical efficacy has been demonstrated by augmentation of pulmonary antiprotease activity, but demonstration of clinical efficacy in randomized, placebo-controlled trials has been hampered by the practical difficulties of performing conventional studies in a rare disease with a relatively long natural history. Computed tomography has been applied to measure lung density as a more specific and sensitive surrogate outcome measure of emphysema than physiologic indices, such as forced expiratory volume in 1 second, and studies consistently show a therapeutic reduction in the rate of lung density decline. However, convincing evidence of benefit using traditional clinical measures remains elusive. Intravenous administration of AAT at a dose of 60 mg/kg/week is the commonest regime in use and has well-documented safety and tolerability. International and national guidelines on the management of AAT deficiency recommend intravenous augmentation therapy to supplement optimized usual COPD treatment in patients with severe deficiency and evidence of lung function impairment.
Collapse
Affiliation(s)
- David G Parr
- Department of Respiratory Medicine, Cardio-Respiratory Division, University Hospital Coventry, Coventry, UK
| | - Beatriz Lara
- Department of Respiratory Medicine, Cardio-Respiratory Division, University Hospital Coventry, Coventry, UK
| |
Collapse
|
45
|
Tratamiento de la EPOC Estable. Arch Bronconeumol 2017. [DOI: 10.1016/s0300-2896(17)30361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Proceso de la atención inicial al paciente con EPOC. Estrategias de cribado. Arch Bronconeumol 2017. [DOI: 10.1016/s0300-2896(17)30359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Miravitlles M, Soler-Cataluña JJ, Calle M, Molina J, Almagro P, Quintano JA, Trigueros JA, Cosío BG, Casanova C, Riesco JA, Simonet P, Rigau D, Soriano JB, Ancochea J. Spanish COPD Guidelines (GesEPOC) 2017. Pharmacological Treatment of Stable Chronic Obstructive Pulmonary Disease. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.arbr.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Definición, etiología, factores de riesgo y fenotipos de la EPOC. Arch Bronconeumol 2017. [DOI: 10.1016/s0300-2896(17)30357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Miravitlles M, Soler-Cataluña JJ, Calle M, Molina J, Almagro P, Quintano JA, Trigueros JA, Cosío BG, Casanova C, Antonio Riesco J, Simonet P, Rigau D, Soriano JB, Ancochea J. Spanish Guidelines for Management of Chronic Obstructive Pulmonary Disease (GesEPOC) 2017. Pharmacological Treatment of Stable Phase. Arch Bronconeumol 2017; 53:324-335. [PMID: 28477954 DOI: 10.1016/j.arbres.2017.03.018] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 01/04/2023]
Abstract
The clinical presentation of chronic obstructive pulmonary disease (COPD) varies widely, so treatment must be tailored according to the level of risk and phenotype. In 2012, the Spanish COPD Guidelines (GesEPOC) first established pharmacological treatment regimens based on clinical phenotypes. These regimens were subsequently adopted by other national guidelines, and since then, have been backed up by new evidence. In this 2017 update, the original severity classification has been replaced by a much simpler risk classification (low or high risk), on the basis of lung function, dyspnea grade, and history of exacerbations, while determination of clinical phenotype is recommended only in high-risk patients. The same clinical phenotypes have been maintained: non-exacerbator, asthma-COPD overlap (ACO), exacerbator with emphysema, and exacerbator with bronchitis. Pharmacological treatment of COPD is based on bronchodilators, the only treatment recommended in low-risk patients. High-risk patients will receive different drugs in addition to bronchodilators, depending on their clinical phenotype. GesEPOC reflects a more individualized approach to COPD treatment, according to patient clinical characteristics and level of risk or complexity.
Collapse
Affiliation(s)
- Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron, Barcelona, España; CIBER de Enfermedades Respiratorias (CIBERES), España.
| | | | - Myriam Calle
- Servicio de Neumología, Hospital Clínico San Carlos, Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, España
| | - Jesús Molina
- Centro de Salud Francia, Dirección Asistencial Oeste, Madrid, España
| | - Pere Almagro
- Servicio de Medicina Interna, Hospital Universitario Mutua de Terrassa, Terrassa, España
| | | | | | - Borja G Cosío
- Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, España; CIBER de Enfermedades Respiratorias (CIBERES), España
| | - Ciro Casanova
- Servicio de Neumología-Unidad de Investigación, Hospital Universitario La Candelaria, Tenerife, España
| | | | - Pere Simonet
- Centro de Salud Viladecans-2, Dirección Atención Primaria Costa de Ponent-Institut Català de la Salut, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, España
| | - David Rigau
- Centro Cochrane Iberoamericano, Barcelona, España
| | - Joan B Soriano
- Instituto de Investigación Hospital Universitario de La Princesa (IISP), Universidad Autónoma de Madrid, Consultor Metodológico y de Investigación de SEPAR, Madrid, España
| | - Julio Ancochea
- Servicio de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación, Hospital Universitario de La Princesa (IISP), Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
50
|
Blanco I, Bueno P, Diego I, Pérez-Holanda S, Casas-Maldonado F, Esquinas C, Miravitlles M. Alpha-1 antitrypsin Pi*Z gene frequency and Pi*ZZ genotype numbers worldwide: an update. Int J Chron Obstruct Pulmon Dis 2017; 12:561-569. [PMID: 28243076 PMCID: PMC5315200 DOI: 10.2147/copd.s125389] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In alpha-1 antitrypsin deficiency (AATD), the Z allele is present in 98% of cases with severe disease, and knowledge of the frequency of this allele is essential from a public health perspective. However, there is a remarkable lack of epidemiological data on AATD worldwide, and many of the data currently used are outdated. Therefore, the objective of this study was to update the knowledge of the frequency of the Z allele to achieve accurate estimates of the prevalence and number of Pi*ZZ genotypes worldwide based on studies performed according to the following criteria: 1) samples representative of the general population, 2) AAT phenotyping characterized by adequate methods, and 3) measurements performed using a coefficient of variation calculated from the sample size and 95% confidence intervals. Studies fulfilling these criteria were used to develop maps with an inverse distance weighted (IDW)-interpolation method, providing numerical and graphical information of Pi*Z distribution worldwide. A total of 224 cohorts from 65 countries were included in the study. With the data provided by these cohorts, a total of 253,404 Pi*ZZ were estimated worldwide: 119,594 in Europe, 91,490 in America and Caribbean, 3,824 in Africa, 32,154 in Asia, 4,126 in Australia, and 2,216 in New Zealand. In addition, the IDW-interpolation maps predicted Pi*Z frequencies throughout the world even in some areas that lack real data. In conclusion, the inclusion of new well-designed studies and the exclusion of the low-quality ones have significantly improved the reliability of results, which may be useful to plan strategies for future research and diagnosis and to rationalize the therapeutic resources available.
Collapse
Affiliation(s)
- Ignacio Blanco
- Alpha1-Antitrypsin Deficiency Spanish Registry (REDAAT), Fundación Respira, Spanish Society of Pneumology and Thoracic Surgery (SEPAR), Barcelona
| | | | - Isidro Diego
- Materials and Energy Department, School of Mining Engineering, Oviedo University
| | - Sergio Pérez-Holanda
- Surgical Department, University Central Hospital of Asturias (HUCA), Oviedo, Principality of Asturias
| | | | | | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron; CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| |
Collapse
|