Keratin expression in gingival tissue and primary cultured gingival keratinocytes: Are there differences?
Arch Oral Biol 2020;
117:104780. [PMID:
32535293 DOI:
10.1016/j.archoralbio.2020.104780]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE
To investigate whether the process of primary gingival keratinocytes culture obtained from normal human gingiva modifies the expression of keratins (K) 10, K14, and K19.
DESIGN
Human gingival fragments were collected from healthy individuals in the same oral site. One part of the samples underwent an immunohistochemistry assay for K10, K14, and K19. The labeling in the epithelium was quantified using a semiautomated method. Another part was used for primary gingival keratinocytes isolation and growth in two-dimensional culture. These cells were also stained for K10, K14, and K19 using immunofluorescence and immunocytochemistry. Positive cells were counted, and the nuclei and cytoplasmatic labeling areas were quantified.
RESULTS
In the gingival tissue, a higher expression was found for K14 versus K10 (p < 0.001); K19 was negative in all samples. In gingival keratinocytes culture, K14 (89.6 %) had the highest expression with significant differences in relation to K10 (76.9 %, p < 0.01) and K19 (9.9 %, p < 0.01). The cells positive for K14 exhibited larger nuclei in comparison with K10 (p < 0.05) and K19 (p < 0.05), suggesting a more undifferentiated phenotype. K19 cells showed the largest cytoplasmatic labeling in relation to K10- (p < 0.05) and K14-positive (p < 0.05) cells.
CONCLUSION
The process of growth in culture of gingival keratinocytes maintained the expression pattern of K10 and K14 observed in gingival tissues. However, this method induces the expression of K19, suggesting a potential transformation of the keratin network presented in the gingival keratinocytes during the formation of a monolayer in vitro. This reflects the dynamics of cell differentiation.
Collapse