1
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
2
|
Ge Y, Li Y, Wang Z, Li L, Teng H, Jiang Q. Effects of Mechanical Compression on Chondrogenesis of Human Synovium-Derived Mesenchymal Stem Cells in Agarose Hydrogel. Front Bioeng Biotechnol 2021; 9:697281. [PMID: 34350163 PMCID: PMC8327094 DOI: 10.3389/fbioe.2021.697281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023] Open
Abstract
Mechanical compression is a double-edged sword for cartilage remodeling, and the effect of mechanical compression on chondrogenic differentiation still remains elusive to date. Herein, we investigate the effect of mechanical dynamic compression on the chondrogenic differentiation of human synovium-derived mesenchymal stem cells (SMSCs). To this aim, SMSCs encapsulated in agarose hydrogels were cultured in chondrogenic-induced medium with or without dynamic compression. Dynamic compression was applied at either early time-point (day 1) or late time-point (day 21) during chondrogenic induction period. We found that dynamic compression initiated at early time-point downregulated the expression level of chondrocyte-specific markers as well as hypertrophy-specific markers compared with unloaded control. On the contrary, dynamic compression applied at late time-point not only enhanced the levels of cartilage matrix gene expression, but also suppressed the hypertrophic development of SMSCs compared with unloaded controls. Taken together, our findings suggest that dynamic mechanical compression loading not only promotes chondrogenic differentiation of SMSCs, but also plays a vital role in the maintenance of cartilage phenotype, and our findings also provide an experimental guide for stem cell-based cartilage repair and regeneration.
Collapse
Affiliation(s)
- Yuxiang Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yixuan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zixu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
| | - Huajian Teng
- Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
4
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
5
|
Zong Z, Zhang X, Yang Z, Yuan W, Huang J, Lin W, Chen T, Yu J, Chen J, Cui L, Li G, Wei B, Lin S. Rejuvenated ageing mesenchymal stem cells by stepwise preconditioning ameliorates surgery-induced osteoarthritis in rabbits. Bone Joint Res 2021; 10:10-21. [PMID: 33382341 PMCID: PMC7845463 DOI: 10.1302/2046-3758.101.bjr-2020-0249.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aims Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model. Methods Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone. Results Stepwise preconditioning approach significantly enhanced the proliferation and chondrogenic potential of ageing hMSCs at early passage. Interestingly, remarkably lower immunogenicity and senescence was also found in hM-MSCs. Data from animal studies showed cartilage damage was retarded and subchondral bone remodelling was prevented by the treatment of preconditioned MSCs. The therapeutic effect depended on the number of cells applied to animals, with the best effect observed when treated with eight millions of hM-MSCs. Conclusion This study demonstrated a reliable and feasible stepwise preconditioning strategy to improve the safety and efficacy of ageing MSCs for the prevention of OA development. Cite this article: Bone Joint Res 2021;10(1):10–21.
Collapse
Affiliation(s)
- Zhixian Zong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Xiaoting Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Zhengmeng Yang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Weihao Yuan
- Department of Biomedical Engineering, Faculty of Engineering, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jianping Huang
- Department of Stomatology, Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Weiping Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Ting Chen
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Jiahao Yu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Jiming Chen
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Department of Pharmacology, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, USA
| |
Collapse
|
6
|
Tanikella AS, Hardy MJ, Frahs SM, Cormier AG, Gibbons KD, Fitzpatrick CK, Oxford JT. Emerging Gene-Editing Modalities for Osteoarthritis. Int J Mol Sci 2020; 21:ijms21176046. [PMID: 32842631 PMCID: PMC7504272 DOI: 10.3390/ijms21176046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a pathological degenerative condition of the joints that is widely prevalent worldwide, resulting in significant pain, disability, and impaired quality of life. The diverse etiology and pathogenesis of OA can explain the paucity of viable preventive and disease-modifying strategies to counter it. Advances in genome-editing techniques may improve disease-modifying solutions by addressing inherited predisposing risk factors and the activity of inflammatory modulators. Recent progress on technologies such as CRISPR/Cas9 and cell-based genome-editing therapies targeting the genetic and epigenetic alternations in OA offer promising avenues for early diagnosis and the development of personalized therapies. The purpose of this literature review was to concisely summarize the genome-editing options against chronic degenerative joint conditions such as OA with a focus on the more recently emerging modalities, especially CRISPR/Cas9. Future advancements in novel genome-editing therapies may improve the efficacy of such targeted treatments.
Collapse
Affiliation(s)
- Alekya S. Tanikella
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (A.S.T.); (M.J.H.); (S.M.F.)
| | - Makenna J. Hardy
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (A.S.T.); (M.J.H.); (S.M.F.)
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Stephanie M. Frahs
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (A.S.T.); (M.J.H.); (S.M.F.)
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Aidan G. Cormier
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725, USA; (A.G.C.); (K.D.G.); (C.K.F.)
| | - Kalin D. Gibbons
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725, USA; (A.G.C.); (K.D.G.); (C.K.F.)
| | - Clare K. Fitzpatrick
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725, USA; (A.G.C.); (K.D.G.); (C.K.F.)
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (A.S.T.); (M.J.H.); (S.M.F.)
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Correspondence: ; Tel.: +1-208-426-2395
| |
Collapse
|
7
|
Maleitzke T, Elazaly H, Festbaum C, Eder C, Karczewski D, Perka C, Duda GN, Winkler T. Mesenchymal Stromal Cell-Based Therapy-An Alternative to Arthroplasty for the Treatment of Osteoarthritis? A State of the Art Review of Clinical Trials. J Clin Med 2020; 9:jcm9072062. [PMID: 32630066 PMCID: PMC7409016 DOI: 10.3390/jcm9072062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder worldwide and to date no regenerative treatment has been established in clinical practice. This review evaluates the current literature on the clinical translation of mesenchymal stromal cell (MSC)-based therapy in OA management with a focus on safety, outcomes and procedural specifics. PubMed, Cochrane Library and clinicaltrials.gov were searched for clinical studies using MSCs for OA treatment. 290 articles were initially identified and 42 articles of interest, including a total of 1325 patients, remained for further examination. Most of the included studies used adipose tissue-derived MSCs or bone-marrow-derived MSCs to treat patients suffering from knee OA. MSC-based therapy for knee OA appears to be safe and presumably effective in selected parameters. Yet, a direct comparison between studies was difficult due to a pronounced variance regarding methodology, assessed outcomes and evidence levels. Intensive scientific engagement is needed to identify the most effective source and dosage of MSCs for OA treatment in the future. Consent on outcome measures has to be reached and eventually patient sub-populations need to be identified that will profit most from MSC-based treatment for OA.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Hisham Elazaly
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Christian Festbaum
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
| | - Christian Eder
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
| | - Daniel Karczewski
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tobias Winkler
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-559084
| |
Collapse
|
8
|
Redondo J, Sarkar P, Kemp K, Heesom KJ, Wilkins A, Scolding NJ, Rice CM. Dysregulation of Mesenchymal Stromal Cell Antioxidant Responses in Progressive Multiple Sclerosis. Stem Cells Transl Med 2018; 7:748-758. [PMID: 30063300 PMCID: PMC6186266 DOI: 10.1002/sctm.18-0045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
The potential of autologous cell-based therapies including those using multipotent mesenchymal stromal cells (MSCs) is being investigated for multiple sclerosis (MS) and other neurological conditions. However, the phenotype of MSC in neurological diseases has not been fully characterized. We have previously shown that MSC isolated from patients with progressive MS (MS-MSC) have reduced expansion potential, premature senescence, and reduced neuroprotective potential in vitro. In view of the role of antioxidants in ageing and neuroprotection, we examined the antioxidant capacity of MS-MSC demonstrating that MS-MSC secretion of antioxidants superoxide dismutase 1 (SOD1) and glutathione S-transferase P (GSTP) is reduced and correlates negatively with the duration of progressive phase of MS. We confirmed reduced expression of SOD1 and GSTP by MS-MSC along with reduced activity of SOD and GST and, to examine the antioxidant capacity of MS-MSC under conditions of nitrosative stress, we established an in vitro cell survival assay using nitric oxide-induced cell death. MS-MSC displayed differential susceptibility to nitrosative stress with accelerated senescence and greater decline in expression of SOD1 and GSTP in keeping with reduced expression of master regulators of antioxidant responses nuclear factor erythroid 2-related factor 2 and peroxisome proliferator-activated receptor gamma coactivator 1-α. Our results are compatible with dysregulation of antioxidant responses in MS-MSC and have significant implications for development of autologous MSC-based therapies for MS, optimization of which may require that these functional deficits are reversed. Furthermore, improved understanding of the underlying mechanisms may yield novel insights into MS pathophysiology and biomarker identification. Stem Cells Translational Medicine 2018;7:748-758.
Collapse
Affiliation(s)
- Juliana Redondo
- Clinical Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Pamela Sarkar
- Clinical Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Kevin Kemp
- Clinical Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Alastair Wilkins
- Clinical Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Neil J Scolding
- Clinical Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Claire M Rice
- Clinical Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Yu W, Cao DD, Li QB, Mei HL, Hu Y, Guo T. Adipocytes secreted leptin is a pro-tumor factor for survival of multiple myeloma under chemotherapy. Oncotarget 2018; 7:86075-86086. [PMID: 27863383 PMCID: PMC5349898 DOI: 10.18632/oncotarget.13342] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidences have shown that adipokines secreted from adipocytes contributes to tumor development, especially leptin. However, underlying mechanisms remain unclear. This study aims to explore the effect of leptin on development and chemoresistance in multiple myeloma cells and the potential mechanism. Analysis of levels of adipokines including leptin and adiponectin in 28 multiple myeloma patients identified significantly higher leptin compared with 28 normal controls(P < 0.05), and leptin level was positively correlated with clinical stage, IgG, ER, and ß2MG. Next, by using co-culture system of myeloma and adipocytes, and pharmacologic enhancement of leptin, we found that increased growth of myeloma cells and reduced toxicity of bortezomib were best observed at 50 ng/ml of leptin, along with increased expression of cyclinD1, Bcl-2 and decreased caspase-3 expression. We also found that phosphorylated AKT and STAT3 but not the proteins expression reached peak after 1h and 6h treatment of leptin, respectively. By using AG490, an agent blocking the phosphorylation of AKT and ERK, the proliferation of myeloma cells was inhibited, as well as the phosphorylation of AKT and STAT3, even adding leptin. Taken together, our study demonstrated that up-regulated leptin could stimulate proliferation of myeloma and reduce the anti-tumor effect of chemotherapy possibly via activating AKT and STAT3 pathways, and leptin might be one of the potential therapeutic targets for treating myeloma.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-Dong Cao
- Department of Oncology, Remmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiu-Bai Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui-Ling Mei
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Guo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Sarkar P, Redondo J, Kemp K, Ginty M, Wilkins A, Scolding NJ, Rice CM. Reduced neuroprotective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis. Cytotherapy 2017; 20:21-28. [PMID: 28917625 PMCID: PMC5758344 DOI: 10.1016/j.jcyt.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Clinical trials using ex vivo expansion of autologous mesenchymal stromal cells (MSCs) are in progress for several neurological diseases including multiple sclerosis (MS). Given that environment alters MSC function, we examined whether in vitro expansion, increasing donor age and progressive MS affect the neuroprotective properties of the MSC secretome. METHODS Comparative analyses of neuronal survival in the presence of MSC-conditioned medium (MSCcm) isolated from control subjects (C-MSCcm) and those with MS (MS-MSCcm) were performed following (1) trophic factor withdrawal and (2) nitric oxide-induced neurotoxicity. RESULTS Reduced neuronal survival following trophic factor withdrawal was seen in association with increasing expansion of MSCs in vitro and MSC donor age. Controlling for these factors, there was an independent, negative effect of progressive MS. In nitric oxide neurotoxicity, MSCcm-mediated neuroprotection was reduced when C-MSCcm was isolated from higher-passage MSCs and was negatively associated with increasing MSC passage number and donor age. Furthermore, the neuroprotective effect of MSCcm was lost when MSCs were isolated from patients with MS. DISCUSSION Our findings have significant implications for MSC-based therapy in neurodegenerative conditions, particularly for autologous MSC therapy in MS. Impaired neuroprotection mediated by the MSC secretome in progressive MS may reflect reduced reparative potential of autologous MSC-based therapy in MS and it is likely that the causes must be addressed before the full potential of MSC-based therapy is realized. Additionally, we anticipate that understanding the mechanisms responsible will contribute new insights into MS pathogenesis and may also be of wider relevance to other neurodegenerative conditions.
Collapse
Affiliation(s)
- Pamela Sarkar
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Juliana Redondo
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Kevin Kemp
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Mark Ginty
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | - Neil J Scolding
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Claire M Rice
- School of Clinical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
11
|
Redondo J, Sarkar P, Kemp K, Virgo PF, Pawade J, Norton A, Emery DC, Guttridge MG, Marks DI, Wilkins A, Scolding NJ, Rice CM. Reduced cellularity of bone marrow in multiple sclerosis with decreased MSC expansion potential and premature ageing in vitro. Mult Scler 2017; 24:919-931. [PMID: 28548004 PMCID: PMC6029147 DOI: 10.1177/1352458517711276] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Autologous bone-marrow-derived cells are currently employed in clinical
studies of cell-based therapy in multiple sclerosis (MS) although the bone
marrow microenvironment and marrow-derived cells isolated from patients with
MS have not been extensively characterised. Objectives: To examine the bone marrow microenvironment and assess the proliferative
potential of multipotent mesenchymal stromal cells (MSCs) in progressive
MS. Methods: Comparative phenotypic analysis of bone marrow and marrow-derived MSCs
isolated from patients with progressive MS and control subjects was
undertaken. Results: In MS marrow, there was an interstitial infiltrate of inflammatory cells with
lymphoid (predominantly T-cell) nodules although total cellularity was
reduced. Controlling for age, MSCs isolated from patients with MS had
reduced in vitro expansion potential as determined by population doubling
time, colony-forming unit assay, and expression of β-galactosidase. MS MSCs
expressed reduced levels of Stro-1 and displayed accelerated shortening of
telomere terminal restriction fragments (TRF) in vitro. Conclusion: Our results are consistent with reduced proliferative capacity and ex vivo
premature ageing of bone-marrow-derived cells, particularly MSCs, in MS.
They have significant implication for MSC-based therapies for MS and suggest
that accelerated cellular ageing and senescence may contribute to the
pathophysiology of progressive MS.
Collapse
Affiliation(s)
- Juliana Redondo
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Pamela Sarkar
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Kevin Kemp
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Paul F Virgo
- Department of Immunology, Southmead Hospital, Bristol, UK
| | - Joya Pawade
- Department of Pathology, Southmead Hospital, Bristol, UK
| | - Aimie Norton
- Department of Pathology, Southmead Hospital, Bristol, UK
| | - David C Emery
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | - David I Marks
- Blood and Marrow Transplant Unit, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | | | - Neil J Scolding
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Claire M Rice
- School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 2017; 12:39. [PMID: 28279182 PMCID: PMC5345159 DOI: 10.1186/s13018-017-0534-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place.
Collapse
Affiliation(s)
- Andy Goldberg
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Katrina Mitchell
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Julian Soans
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Louise Kim
- Joint Research and Enterprise Office, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, Hunter Wing, Cranmer Terrace, London, SW17 0RE UK
| | - Razi Zaidi
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| |
Collapse
|
13
|
Kalamegam G, Abbas M, Gari M, Alsehli H, Kadam R, Alkaff M, Chaudhary A, Al-Qahtani M, Abuzenadah A, Kafienah W, Mobasheri A. Pelleted Bone Marrow Derived Mesenchymal Stem Cells Are Better Protected from the Deleterious Effects of Arthroscopic Heat Shock. Front Physiol 2016; 7:180. [PMID: 27252654 PMCID: PMC4877393 DOI: 10.3389/fphys.2016.00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/05/2016] [Indexed: 01/10/2023] Open
Abstract
Introduction: The impact of arthroscopic temperature on joint tissues is poorly understood and it is not known how mesenchymal stem cells (MSCs) respond to the effects of heat generated by the device during the process of arthroscopy assisted experimental cell-based therapy. In the present study, we isolated and phenotypically characterized human bone marrow mesenchymal stem cells (hBMMSCs) from osteoarthritis (OA) patients, and evaluated the effect of arthroscopic heat on cells in suspension and pellet cultures. Methods: Primary cultures of hBMMSCs were isolated from bone marrow aspirates of OA patients and cultured using DMEM supplemented with 10% FBS and characterized for their stemness. hBMMSCs (1 × 106 cells) cultured as single cell suspensions or cell pellets were exposed to an illuminated arthroscope for 10, 20, or 30 min. This was followed by analysis of cellular proliferation and heat shock related gene expression. Results: hBMMSCs were viable and exhibited population doubling, short spindle morphology, MSC related CD surface markers expression and tri-lineage differentiation into adipocytes, chondrocytes and osteoblasts. Chondrogenic and osteogenic differentiation increased collagen production and alkaline phosphatase activity. Exposure of hBMMSCs to an illuminated arthroscope for 10, 20, or 30 min for 72 h decreased metabolic activity of the cells in suspensions (63.27% at 30 min) and increased metabolic activity in cell pellets (62.86% at 10 min and 68.57% at 20 min). hBMMSCs exposed to 37, 45, and 55°C for 120 s demonstrated significant upregulation of BAX, P53, Cyclin A2, Cyclin E1, TNF-α, and HSP70 in cell suspensions compared to cell pellets. Conclusions: hBMMSC cell pellets are better protected from temperature alterations compared to cell suspensions. Transplantation of hBMMSCs as pellets rather than as cell suspensions to the cartilage defect site would therefore support their viability and may aid enhanced cartilage regeneration.
Collapse
Affiliation(s)
- Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research, King Abdulaziz UniversityJeddah, Saudi Arabia; Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Mohammed Abbas
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz UniversityJeddah, Saudi Arabia; Department of Orthopedic Surgery, Faculty of Medicine, King Abdulaziz University HospitalJeddah, Saudi Arabia
| | - Mamdooh Gari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz UniversityJeddah, Saudi Arabia; Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz UniversityJeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Haneen Alsehli
- Faculty of Applied Medical Sciences, Center of Innovation in Personalized Medicine, King Abdulaziz University Jeddah, Saudi Arabia
| | - Roaa Kadam
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University Jeddah, Saudi Arabia
| | - Mohammed Alkaff
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz UniversityJeddah, Saudi Arabia; Department of Orthopedic Surgery, Faculty of Medicine, King Abdulaziz University HospitalJeddah, Saudi Arabia
| | - Adeel Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University Jeddah, Saudi Arabia
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University Jeddah, Saudi Arabia
| | - Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz UniversityJeddah, Saudi Arabia; Faculty of Applied Medical Sciences, Center of Innovation in Personalized Medicine, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Wael Kafienah
- School of Cellular and Molecular Medicine, University of Bristol Bristol, UK
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research, King Abdulaziz UniversityJeddah, Saudi Arabia; The D-BOARD European Consortium for Biomarker Discovery, The APPROACH Innovative Medicines Initiative Consortium, Faculty of Health and Medical Sciences, University of SurreySurrey, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Aging Research, University of Nottingham, Queen's Medical CentreNottingham, UK
| |
Collapse
|
14
|
Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2015; 99:69-80. [PMID: 26384579 DOI: 10.1016/j.ymeth.2015.09.015] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/10/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023] Open
Abstract
Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.
Collapse
|
15
|
Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes. Stem Cells Int 2015; 2015:640218. [PMID: 26273306 PMCID: PMC4529975 DOI: 10.1155/2015/640218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/11/2014] [Accepted: 01/02/2015] [Indexed: 12/27/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA), anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures). There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCs per se could be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring.
Collapse
|
16
|
Liu Y, Buckley CT, Almeida HV, Mulhall KJ, Kelly DJ. Infrapatellar fat pad-derived stem cells maintain their chondrogenic capacity in disease and can be used to engineer cartilaginous grafts of clinically relevant dimensions. Tissue Eng Part A 2014; 20:3050-62. [PMID: 24785365 PMCID: PMC4229863 DOI: 10.1089/ten.tea.2014.0035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/25/2014] [Indexed: 12/27/2022] Open
Abstract
A therapy for regenerating large cartilaginous lesions within the articular surface of osteoarthritic joints remains elusive. While tissue engineering strategies such as matrix-assisted autologous chondrocyte implantation can be used in the repair of focal cartilage defects, extending such approaches to the treatment of osteoarthritis will require a number of scientific and technical challenges to be overcome. These include the identification of an abundant source of chondroprogenitor cells that maintain their chondrogenic capacity in disease, as well as the development of novel approaches to engineer scalable cartilaginous grafts that could be used to resurface large areas of damaged joints. In this study, it is first demonstrated that infrapatellar fat pad-derived stem cells (FPSCs) isolated from osteoarthritic (OA) donors possess a comparable chondrogenic capacity to FPSCs isolated from patients undergoing ligament reconstruction. In a further validation of their functionality, we also demonstrate that FPSCs from OA donors respond to the application of physiological levels of cyclic hydrostatic pressure by increasing aggrecan gene expression and the production of sulfated glycosaminoglycans. We next explored whether cartilaginous grafts could be engineered with diseased human FPSCs using a self-assembly or scaffold-free approach. After examining a range of culture conditions, it was found that continuous supplementation with both transforming growth factor-β3 (TGF-β3) and bone morphogenic protein-6 (BMP-6) promoted the development of tissues rich in proteoglycans and type II collagen. The final phase of the study sought to scale-up this approach to engineer cartilaginous grafts of clinically relevant dimensions (≥2 cm in diameter) by assembling FPSCs onto electrospun PLLA fiber membranes. Over 6 weeks in culture, it was possible to generate robust, flexible cartilage-like grafts of scale, opening up the possibility that tissues engineered using FPSCs derived from OA patients could potentially be used to resurface large areas of joint surfaces damaged by trauma or disease.
Collapse
Affiliation(s)
- Yurong Liu
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Sports Surgery Clinic, Dublin, Ireland
| | - Conor Timothy Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Henrique V. Almeida
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | | | - Daniel John Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
McClelland Descalzo DL, Ehnes DD, zur Nieden NI. Stem cells for osteodegenerative diseases: current studies and future outlook. Regen Med 2014; 9:219-30. [DOI: 10.2217/rme.13.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As the worldwide population grows and life expectancies continue to increase, degenerative diseases of the bones, muscles, and connective tissue are a growing problem for society. Current therapies for osteodegenerative disorders such as hormone replacement therapies, calcium/vitamin D supplements and oral bisphosphonates are often inadequate to stop degeneration and/or have serious negative side effects. Thus, there is an urgent need in the medical community for more effective and safer treatments. Stem cell therapies for osteodegenerative disorders have been rigorously explored over the last decade and are yielding some promising results in animal models and clinical trials. Although much work still needs to be done to ensure the safety and efficacy of these therapies, stem cells represent a new frontier of exciting possibilities for bone and cartilage regeneration.
Collapse
Affiliation(s)
- Darcie L McClelland Descalzo
- Department of Cell Biology & Neuroscience, 1113 Biological Sciences Building, University of California Riverside, Riverside, CA 92521, USA
| | - Devon D Ehnes
- Department of Cell Biology & Neuroscience, 1113 Biological Sciences Building, University of California Riverside, Riverside, CA 92521, USA
| | - Nicole I zur Nieden
- Department of Cell Biology & Neuroscience, 1113 Biological Sciences Building, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Regenerative medicine offers the exciting potential of developing alternatives to total joint replacement for treating osteoarthritis. In this article, we highlight recent work that addresses key challenges of stem cell-based therapies for osteoarthritis and provide examples of innovative ways in which stem cells can aid in the treatment of osteoarthritis. RECENT FINDINGS Significant progress has been made in understanding the challenges to successful stem cell therapy, such as the effects of age or disease on stem cell properties, altered stem cell function due to an inflammatory joint environment and phenotypic instability in vivo. Novel scaffold designs have been shown to enhance the mechanical properties of tissue-engineered cartilage and have also improved the integration of newly formed tissue within the joint. Emerging strategies such as injecting stem cells directly into the joint, manipulating endogenous stem cells to enhance regenerative capacity and utilizing stem cells for drug discovery have expanded the potential uses of stem cells in treating osteoarthritis. SUMMARY Several recent studies have greatly advanced the development and preclinical evaluation of potential stem cell-based treatments for osteoarthritis through novel approaches focused on cell therapy, tissue engineering and drug discovery.
Collapse
|
19
|
Chow DHK, Suen PK, Fu LH, Cheung WH, Leung KS, Wong MWN, Qin L. Extracorporeal shockwave therapy for treatment of delayed tendon-bone insertion healing in a rabbit model: a dose-response study. Am J Sports Med 2012; 40:2862-71. [PMID: 23075803 DOI: 10.1177/0363546512461596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendon-bone insertion (TBI) consists of both hard and soft tissues. TBI injury with delayed repair is not uncommon. High-dose extracorporeal shockwave (ESW) is effective for treating nonunion fracture, whereas low-dose ESW is used for tendinopathy therapy. The dosing effect of ESW on delayed TBI healing is lacking. HYPOTHESIS Low-dose ESW might have a healing enhancement effect comparable to that of high-dose ESW in treating delayed TBI healing. STUDY DESIGN Controlled laboratory study. METHODS Partial patellectomy was adopted to create a delayed TBI healing model by shielding the healing interface between tendon and bone. Ninety-six female New Zealand White rabbits with unilateral delayed TBI healing at the knee joint were divided into 3 groups: controls, low-dose ESW (LD-ESW; 0.06 mJ/mm(2), 4 Hz, 1500 impulses), and high-dose ESW (HD-ESW; 0.43 mJ/mm(2), 4 Hz, 1500 impulses). The TBI shielding was removed at week 4 after partial patellectomy, followed by treatment with control or ESW at week 6. The rabbits were euthanized at week 8 and week 12 for radiological, microarchitectural, histological, and mechanical assessments of healing tissues. RESULTS Radiologically, both the LD-ESW group and the HD-ESW group showed larger new bone area than the controls at week 8 and week 12. Microarchitectural measurements showed that the LD-ESW and HD-ESW groups had larger new bone volume than the controls at week 12. Histological assessments confirmed osteogenesis enhancement. Both the LD-ESW and HD-ESW groups showed significantly higher failure load at the TBI healing complex than the control group at week 12. No significant difference was detected between the 2 ESW treatment groups at week 8 or week 12. CONCLUSION Extracorporeal shockwave, a unique noninvasive physical modality, had similar effects between the low and high dose for treating delayed TBI healing. CLINICAL RELEVANCE Low-dose ESW for TBI delayed healing might be more desirable and have better compliance in clinical applications.
Collapse
Affiliation(s)
- Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Alegre-Aguarón E, Desportes P, García-Álvarez F, Castiella T, Larrad L, Martínez-Lorenzo MJ. Differences in surface marker expression and chondrogenic potential among various tissue-derived mesenchymal cells from elderly patients with osteoarthritis. Cells Tissues Organs 2012; 196:231-40. [PMID: 22947769 DOI: 10.1159/000334400] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could potentially be used to repair injured cartilage in diseases such as osteoarthritis (OA). In this study we used bone marrow, adipose tissue from articular and subcutaneous locations, and synovial fluid samples from 18 patients with knee OA to find a suitable alternative source for the isolation of MSCs with high chondrogenic potential. MSCs from all tissues analysed had a fibroblastic morphology, but their rates of proliferation varied. Subcutaneous fat-derived MSCs proliferated faster than bone marrow- and Hoffa's fat pad-derived MSCs, while synovial fluid-derived MSCs grew more slowly. CD36 and CD54 expression was similar across all groups of MSCs with several minor differences. High expression of these surface markers in subcutaneous fat-derived MSCs was correlated with poor differentiation into hyaline cartilage. Synovial fluid-derived MSCs presented a relatively small chondrogenic differentiation capacity while Hoffa's fat pad-derived MSCs had strong chondrogenic potential. In conclusion, MSCs from elderly patients with OA may still display significant chondrogenic potential, depending on their origin.
Collapse
|
21
|
Griffiths SL, Griffiths D, Forsyth NR. Mesenchymal stem-cell-based therapy for the older patient. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/ahe.11.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone-marrow aspirate-derived mesenchymal stem cells (MSCs) form a core element of the vast majority of adherent, autologous stem-cell-based therapeutic clinical trials. This article explores the existing literature to determine if proposed MSC-based autologous cell therapy is suitable for use in an elderly patient population. Within the review a number of questions are asked: does the bone-marrow aspirate mononuclear cell (MNC) number, the frequency of MSC colony forming units or their proliferative potential correlate with age? Does disease state have an additional impact? Are immunophenotypes, molecular profiles or differentiation capacity linked to donor age? The answers to the above questions are essential for determining the appropriateness of elderly patients as donors and recipients for autologous MSC-based trials. Taken together, MSC yield, MNC number and proliferative potential all decrease with age while differentiation potential appears unchanged. The retention of differentiation capacity suggests that the elderly patient may be suitable for MSC-based therapy; however, only when isolation protocols are tailored in an individual-specific manner to correct for decreases in MNC number and MSC yield.
Collapse
Affiliation(s)
- Sarah L Griffiths
- The Guy Hilton Research Laboratories, Institute of Science & Technology in Medicine, Keele University Medical School, Stoke-on-Trent, ST4 7QB, UK
| | - David Griffiths
- Department of Orthopaedics, City General Hospital, Stoke-on-Trent, ST4 6QG, UK
| | | |
Collapse
|
22
|
|