1
|
Klangprapan J, Souza GR, Ferreira JN. Bioprinting salivary gland models and their regenerative applications. BDJ Open 2024; 10:39. [PMID: 38816372 PMCID: PMC11139920 DOI: 10.1038/s41405-024-00219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Salivary gland (SG) hypofunction is a common clinical condition arising from radiotherapy to suppress head and neck cancers. The radiation often destroys the SG secretory acini, and glands are left with limited regenerative potential. Due to the complex architecture of SG acini and ducts, three-dimensional (3D) bioprinting platforms have emerged to spatially define these in vitro epithelial units and develop mini-organs or organoids for regeneration. Due to the limited body of evidence, this comprehensive review highlights the advantages and challenges of bioprinting platforms for SG regeneration. METHODS SG microtissue engineering strategies such as magnetic 3D bioassembly of cells and microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes have been proposed to replace the damaged acinar units, avoid the use of xenogeneic matrices (like Matrigel), and restore salivary flow. RESULTS Replacing the SG damaged organ is challenging due to its complex architecture, which combines a ductal network with acinar epithelial units to facilitate a unidirectional flow of saliva. Our research group was the first to develop 3D bioassembly SG epithelial functional organoids with innervation to respond to both cholinergic and adrenergic stimulation. More recently, microtissue engineering using coaxial 3D bioprinting of hydrogel microfibers and microtubes could also supported the formation of viable epithelial units. Both bioprinting approaches could overcome the need for Matrigel by facilitating the assembly of adult stem cells, such as human dental pulp stem cells, and primary SG cells into micro-sized 3D constructs able to produce their own matrix and self-organize into micro-modular tissue clusters with lumenized areas. Furthermore, extracellular vesicle (EV) therapies from organoid-derived secretome were also designed and validated ex vivo for SG regeneration after radiation damage. CONCLUSION Magnetic 3D bioassembly and microfluidic coaxial bioprinting platforms have the potential to create SG mini-organs for regenerative applications via organoid transplantation or organoid-derived EV therapies.
Collapse
Affiliation(s)
- Jutapak Klangprapan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Glauco R Souza
- Greiner Bio-one North America Inc., 4238 Capital Drive, Monroe, NC, 28110, USA
| | - João N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Nam K, Dos Santos HT, Maslow F, Small T, Samuel RZ, Lei P, Andreadis ST, Baker OJ. Fibrin hydrogels fortified with FGF-7/10 and laminin-1 peptides promote regeneration of irradiated salivary glands. Acta Biomater 2023; 172:147-158. [PMID: 37844750 PMCID: PMC10908308 DOI: 10.1016/j.actbio.2023.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Ionizing radiation, commonly used for head and neck cancer treatment, typically damages the salivary glands, resulting in hyposalivation. The development of treatments to restore this lost function is crucial for improving the quality of life for patients suffering from this condition. To address this clinical need, we have developed an innovative hydrogel by chemically conjugating laminin-1 peptides (A99 and YIGSR) and growth factors, FGF-7 and FGF-10, to fibrin hydrogels. Our results demonstrate that FGF-7/10 and laminin-1 peptides fortified fibrin hydrogel [enhanced laminin-1 peptides fibrin hydrogel (Ep-FH)] promotes salivary gland regeneration and functionality by improving epithelial tissue organization, establishing a healthy network of blood vessels and nerves, while reducing fibrosis in a head and neck irradiated mouse model. These results indicate that fibrin hydrogel-based implantable scaffolds containing pro-regenerative signals promote sustained secretory function of irradiated salivary glands, offering a potential alternative treatment for hyposalivation in head and neck cancer patients undergoing radiation treatment. These unique findings emphasize the potential of fibrin hydrogel-based implantable scaffolds enriched with pro-regenerative signals in sustaining the secretory function of irradiated salivary glands and offer a promising alternative treatment for addressing hyposalivation in head and neck cancer patients undergoing radiation therapy. STATEMENT OF SIGNIFICANCE: Radiation therapies used to treat head and neck cancers often result in damaged salivary gland, leading to severe dryness of the oral cavity. In this study, we engineered FGF-7 and FGF-10 and immobilized them into L1p-FH. The resulting hydrogel, Ep-FH, restored irradiated salivary gland functionality by enhancing epithelial tissue organization, promoting the development of a healthy network of blood vessels and nerves as well as reduction of fibrosis.
Collapse
Affiliation(s)
- Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Harim T Dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Frank Maslow
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Travis Small
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Ronel Z Samuel
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States; Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center of Cell, Gene and Tissue Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Olga J Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States; Department of Biochemistry, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
3
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
4
|
Nam K, Dos Santos HT, Maslow F, Trump BG, Lei P, Andreadis ST, Baker OJ. Laminin-1 Peptides Conjugated to Fibrin Hydrogels Promote Salivary Gland Regeneration in Irradiated Mouse Submandibular Glands. Front Bioeng Biotechnol 2021; 9:729180. [PMID: 34631679 PMCID: PMC8498954 DOI: 10.3389/fbioe.2021.729180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies demonstrated that salivary gland morphogenesis and differentiation are enhanced by modification of fibrin hydrogels chemically conjugated to Laminin-1 peptides. Specifically, Laminin-1 peptides (A99: CGGALRGDN-amide and YIGSR: CGGADPGYIGSRGAA-amide) chemically conjugated to fibrin promoted formation of newly organized salivary epithelium both in vitro (e.g., using organoids) and in vivo (e.g., in a wounded mouse model). While these studies were successful, the model's usefulness for inducing regenerative patterns after radiation therapy remains unknown. Therefore, the goal of the current study was to determine whether transdermal injection with the Laminin-1 peptides A99 and YIGSR chemically conjugated to fibrin hydrogels promotes tissue regeneration in irradiated salivary glands. Results indicate that A99 and YIGSR chemically conjugated to fibrin hydrogels promote formation of functional salivary tissue when transdermally injected to irradiated salivary glands. In contrast, when left untreated, irradiated salivary glands display a loss in structure and functionality. Together, these studies indicate that fibrin hydrogel-based implantable scaffolds containing Laminin-1 peptides promote secretory function of irradiated salivary glands.
Collapse
Affiliation(s)
- Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Harim T Dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Frank Maslow
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bryan G Trump
- School of Dentistry, University of Utah, Salt Lake City, UT, United States
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Center of Cell, Gene and Tissue Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Olga J Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States.,Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Dos Santos HT, Kim K, Okano T, Camden JM, Weisman GA, Baker OJ, Nam K. Cell Sheets Restore Secretory Function in Wounded Mouse Submandibular Glands. Cells 2020; 9:cells9122645. [PMID: 33316992 PMCID: PMC7763220 DOI: 10.3390/cells9122645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Thermoresponsive cell culture plates release cells as confluent living sheets in response to small changes in temperature, with recovered cell sheets retaining functional extracellular matrix proteins and tight junctions, both of which indicate formation of intact and functional tissue. Our recent studies demonstrated that cell sheets are highly effective in promoting mouse submandibular gland (SMG) cell differentiation and recovering tissue integrity. However, these studies were performed only at early time points and extension of the observation period is needed to investigate duration of the cell sheets. Thus, the goal of this study was to demonstrate that treatment of wounded mouse SMG with cell sheets is capable of increasing salivary epithelial integrity over extended time periods. The results indicate that cell sheets promote tissue organization as early as eight days after transplantation and that these effects endure through Day 20. Furthermore, cell sheet transplantation in wounded SMG induces a significant time-dependent enhancement of cell polarization, differentiation and ion transporter expression. Finally, this treatment restored saliva quantity to pre-wounding levels at both eight and twenty days post-surgery and significantly improved saliva quality at twenty days post-surgery. These data indicate that cell sheets engineered with thermoresponsive cell culture plates are useful for salivary gland regeneration and provide evidence for the long-term stability of cell sheets, thereby offering a potential new therapeutic strategy for treating hyposalivation.
Collapse
Affiliation(s)
- Harim T Dos Santos
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Jean M Camden
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Olga J Baker
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kihoon Nam
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
6
|
Burghartz M, Taeger J, Metzger M, Scherzad A, Gehrke T, Ickrath P, Kolb E, Kleinsasser N, Hagen R, Hackenberg S. Investigation of Cellular Function and DNA Integrity during 2D in vitro Culture of Human Salivary Gland Epithelial Cells. Cells Tissues Organs 2020; 208:66-75. [PMID: 32023622 DOI: 10.1159/000505433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022] Open
Abstract
In vitro culture of human salivary gland epithelial cells (SGEC) is still a challenge. A high quantity and quality of cells are needed for the cultivation of 3D matrices. Furthermore, it is known that DNA damage is supposed to be an important factor involved in carcinogenesis. This study investigates cellular function and DNA integrity of human SGEC during 3 passage steps in 2 groups (group 1: n = 10; group 2: n = 9). Cellular function was analyzed by immunofluorescence, transmission electron microscopy (TEM), and quantitative real-time polymerase chain reaction (qPCR). DNA integrity was tested via the comet assay. Immunohistochemistry and qPCR results showed stable α-amylase and pan-cytokeratin levels; TEM revealed functional cells; and no significant DNA damage could be detected in the comet assay during 3 culture steps. The study shows that not only at cellular but also at DNA level human SGEC can be safely quantified over 3 passages for preclinical tissue engineering without loss of differentiation and function.
Collapse
Affiliation(s)
- Marc Burghartz
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Stuttgart, Stuttgart, Germany
| | - Johannes Taeger
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany,
| | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Gehrke
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Pascal Ickrath
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Evelyn Kolb
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University, Linz, Austria
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Burghartz M, Lennartz S, Schweinlin M, Hagen R, Kleinsasser N, Hackenberg S, Steußloff G, Scherzad A, Radeloff K, Ginzkey C, Walles H, Metzger M. Development of Human Salivary Gland-Like Tissue In Vitro. Tissue Eng Part A 2017; 24:301-309. [PMID: 28783453 DOI: 10.1089/ten.tea.2016.0466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The loss of salivary gland function caused by radiation therapy of the head and neck is a serious condition and it affects a patient's quality of life. The current lack of effective therapies demands new options to be explored. This study tested whether human salivary gland epithelial cells (SGECs) could be successfully cultured on a decellularized porcine gut matrix (SIS-muc) in both mono- and coculture with microvascular endothelial cells (mvECs). By performing immunofluorescence imaging, transmission as well as scanning electron microscopy (SEM), quantitative polymerase chain reaction (qPCR), and an amylase enzyme assay, it was investigated as to what extent the three-dimensional (3D)-cultured cells could maintain their molecular differentiation and the production of working α-amylase (α-AMY) compared with two-dimensional (2D) culture. In both 3D mono- and coculture, SGECs were successfully cultured and formed acinar-like structures. Those findings were confirmed by SEM imaging. Immunofluorescence imaging revealed that 3D-cultured cells expressed α-AMY, Claudin-1 (CL-1), and water channel protein aquaporin-5 (AQP-5). Two-dimensional-cultured cells only were positive for α-AMY. Real time (RT)-qPCR analysis showed that α-AMY relative gene expression was higher in both 3D mono- and coculture than in 2D culture. In α-AMY enzyme assay, cocultured SGECs showed about 25 times increased enzyme activity compared with 2D-cultured cells. In conclusion, the SIS-muc combined with endothelial coculture seems a suitable culture setting for the tissue engineering of functional human salivary gland tissue.
Collapse
Affiliation(s)
- Marc Burghartz
- 1 Department of Otorhinolaryngology, Head and Neck Surgery , Klinikum Stuttgart, Stuttgart, Germany
| | - Simon Lennartz
- 2 Institute of Diagnostic and Interventional Radiology, University Hospital Cologne , Cologne, Germany
| | - Matthias Schweinlin
- 3 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Rudolf Hagen
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Norbert Kleinsasser
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Stephan Hackenberg
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Gudrun Steußloff
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Agmal Scherzad
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Kathrin Radeloff
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Christian Ginzkey
- 5 Department of Otorhinolaryngology, Head and Neck Surgery "Otto-Körner", University Hospital Rostock , Rostock, Germany
| | - Heike Walles
- 3 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Marco Metzger
- 3 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| |
Collapse
|
8
|
Fong S, Chiorini JA, Sneyd J, Suresh V. Computational modeling of epithelial fluid and ion transport in the parotid duct after transfection of human aquaporin-1. Am J Physiol Gastrointest Liver Physiol 2017; 312:G153-G163. [PMID: 27932503 PMCID: PMC5341129 DOI: 10.1152/ajpgi.00374.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED Previous studies have shown that localized delivery of the aquaporin-1 (AQP1) gene to the parotid duct can restore saliva flow in minipigs following irradiation-induced salivary hypofunction. The resulting flow rate and electrochemistry of secreted saliva contradicts current understanding of ductal fluid transport. We hypothesized that changes in expression of ion transport proteins have occurred following AQP1 transfection. We use a mathematical model of ion and fluid transport across the parotid duct epithelial cells to predict the expression profile of ion transporters that are consistent with the experimental measurements of saliva composition and secretion rates. Using a baseline set of parameters, the model reproduces the data for the irradiated, non-AQP1-transfected case. We propose three scenarios which may have occurred after transfection, which differ in the location of the AQP1 gene. The first scenario places AQP1 within nonsecretory cells, and requires that epithelial sodium channel (ENaC) expression is greatly reduced (1.3% of baseline), and ductal bicarbonate concentration is increased from 40.6 to 137.0 mM, to drive water secretion into the duct. The second scenario introduces the AQP1 gene into all ductal cells. The final scenario has AQP1 primarily in the proximal duct cells which secrete water under baseline conditions. We find the change in the remaining cells includes a 95.8% reduction in ENaC expression, enabling us to reproduce all experimental ionic concentrations within 9 mM. These findings provide a mechanistic basis for the observations and will guide the further development of gene transfer therapy for salivary hypofunction. NEW & NOTEWORTHY Following transfection of aquaporin into the parotid ducts of minipigs with salivary hypofunction, the resulting increase in salivary flow rates contradicts current understanding of ductal fluid transport. We show that the change in saliva electrochemistry and flow rate can be explained by changes in expression of ion transporters in the ductal cell membranes, using a mathematical model replicating a single parotid duct.
Collapse
Affiliation(s)
- Shelley Fong
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand;
| | - John A Chiorini
- 2Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland;
| | - James Sneyd
- 3Department of Mathematics, University of Auckland, Auckland, New Zealand; and
| | - Vinod Suresh
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; ,4Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Xerostomia: current streams of investigation. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:53-60. [PMID: 27189896 DOI: 10.1016/j.oooo.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/13/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
Abstract
Xerostomia is the subjective feeling of dry mouth, and it is often related to salivary hypofunction. Besides medication-related salivary hypofunction, Sjögren syndrome and head-and-neck radiation are two common etiologies that have garnered considerable attention. Approaches to treating and/or preventing salivary hypofunction in patients with these conditions will likely incorporate gene therapy, stem cell therapy, and tissue engineering. Advances in these disciplines are central to current research in the cure for xerostomia and will be key to eventual treatment.
Collapse
|
10
|
Ogawa M, Tsuji T. Functional salivary gland regeneration as the next generation of organ replacement regenerative therapy. Odontology 2015; 103:248-57. [DOI: 10.1007/s10266-015-0210-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/16/2015] [Indexed: 01/30/2023]
|
11
|
Gao Z, Wu T, Xu J, Liu G, Xie Y, Zhang C, Wang J, Wang S. Generation of Bioartificial Salivary Gland Using Whole-Organ Decellularized Bioscaffold. Cells Tissues Organs 2015; 200:171-80. [PMID: 25824480 DOI: 10.1159/000371873] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 11/19/2022] Open
Abstract
Salivary gland hypofunction resulting in xerostomia occurs as a result of various pathological conditions such as radiotherapy for head and neck cancers, Sjögren's syndrome or salivary gland tumor resection. It can induce a large number of problems, including dental decay, periodontitis, dysgeusia, difficulty with mastication and swallowing and a reduced quality of life. Current therapies for xerostomia mostly focus on saliva substitutes, oral lubricants and medications which stimulate salivation from residual glands. However, these treatments are not sufficient to restore gland secretory function. Tissue engineering-based organ regeneration has emerged as a potential therapeutic alternative for end- organ failure. Here, we decellularized rat submandibular glands (SMG) by detergent immersion. Histological, immunofluorescent, Western blot, DNA and collagen quantitative analyses demonstrated that our protocol effectively removed cellular components and that extracellular matrix proteins and native structures were well preserved. We then reseeded the decellularized SMG as scaffolds with rat primary SMG cells in a rotary cell culture system. Histological staining and electron microscopy analyses illustrated that the decellularized SMG could support cellular adhesion. Furthermore, with immunofluorescent staining, we proved that bioartificially generated SMG showed some differentiation markers in vitro. Taken together, our findings might provide a potential scaffold for tissue-engineered regeneration of the salivary glands.
Collapse
|
12
|
Ginzkey C, Friehs G, Koehler C, Hackenberg S, Voelker HU, Richter E, Kleinsasser NH. Nicotine and methyl methane sulfonate in mini organ cultures of human parotid gland tissue. Toxicol Lett 2010; 197:69-74. [DOI: 10.1016/j.toxlet.2010.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 12/19/2022]
|
13
|
Redman RS. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem 2009; 83:103-30. [PMID: 18828044 DOI: 10.1080/10520290802374683] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Radiation therapy for cancer of the head and neck can devastate the salivary glands and partially devitalize the mandible and maxilla. As a result, saliva production is drastically reduced and its quality adversely altered. Without diligent home and professional care, the teeth are subject to rapid destruction by caries, necessitating extractions with attendant high risk of necrosis of the supporting bone. Innovative techniques in delivery of radiation therapy and administration of drugs that selectively protect normal tissues can reduce significantly the radiation effects on salivary glands. Nonetheless, many patients still suffer severe oral dryness. I review here the functional morphology and development of salivary glands as these relate to approaches to preventing and restoring radiation-induced loss of salivary function. The acinar cells are responsible for most of the fluid and organic material in saliva, while the larger ducts influence the inorganic content. A central theme of this review is the extent to which the several types of epithelial cells in salivary glands may be pluripotential and the circumstances that may influence their ability to replace cells that have been lost or functionally inactivated due to the effects of radiation. The evidence suggests that the highly differentiated cells of the acini and large ducts of mature glands can replace themselves except when the respective pools of available cells are greatly diminished via apoptosis or necrosis owing to severely stressful events. Under the latter circumstances, relatively undifferentiated cells in the intercalated ducts proliferate and redifferentiate as may be required to replenish the depleted pools. It is likely that some, if not many, acinar cells may de-differentiate into intercalated duct-like cells and thus add to the pool of progenitor cells in such situations. If the stress is heavy doses of radiation, however, the result is not only the death of acinar cells, but also a marked decline in functional differentiation and proliferative capacity of all of the surviving cells, including those with progenitor capability. Restoration of gland function, therefore, seems to require increasing the secretory capacity of the surviving cells, or replacing the acinar cells and their progenitors either in the existing gland remnants or with artificial glands.
Collapse
Affiliation(s)
- R S Redman
- Oral Pathology Research Laboratory, Department of Veterans Affairs Medical Center, Washington, DC, USA.
| |
Collapse
|
14
|
Aframian DJ, Palmon A. Current status of the development of an artificial salivary gland. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:187-98. [PMID: 18471085 DOI: 10.1089/ten.teb.2008.0044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salivary glands (SGs) secrete more than half a liter of saliva daily. Saliva has many functions in maintaining the normal homeostasis of the oral cavity. Several causes underlie salivary impairment, where irradiation therapy to head and neck cancer patients is one of the most debilitating causes leading to considerable decrease in the patients' quality of life. In the last decade, others and we have focused on implementing tissue engineering principles combined with gene transfer and stem cell methodologies to develop an artificial SG device. This manuscript provides an overview of the current status of engineering an artificial SG.
Collapse
Affiliation(s)
- Doron J Aframian
- Department of Oral Medicine, Salivary Gland Clinic, Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
15
|
Scheller EL, Krebsbach PH, Kohn DH. Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil 2009; 36:368-89. [PMID: 19228277 DOI: 10.1111/j.1365-2842.2009.01939.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.
Collapse
Affiliation(s)
- E L Scheller
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
16
|
Abstract
Salivary gland destruction occurs as a result of various pathological conditions such as radiation therapy for head and neck cancer and Sjögren's syndrome. As saliva possesses self-cleaning and antibacterial capability, hyposalivation is known to deteriorate dental caries and periodontal disease. Furthermore, hyposalivation causes mastication and swallowing problems, burning sensation of the mouth and dysgeusia. Currently available treatments for dry mouth are prescription for artificial saliva, moisturizers and medications which induce salivation from the residual tissue. Unfortunately, these treatments cannot restore the acini functions. This review focuses on various efforts to restore the function of damaged salivary gland. First, the possibility of salivary gland regeneration and tissue engineering is discussed with reference to stem cells, growth factors and scaffold materials. Second, the current status of gene transfer to salivary glands is discussed.
Collapse
Affiliation(s)
- H Kagami
- Department of Tissue Engineering, Nagoya University School of Medicine, Nagoya, Japan.
| | | | | |
Collapse
|
17
|
Wang S, Liu Y, Fang D, Shi S. The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis 2008; 13:530-7. [PMID: 17944668 DOI: 10.1111/j.1601-0825.2006.01337.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Compared with small animal models such as rodents, large animal models are superior in many aspects for the study of human diseases and pre-clinical therapies. Since the development of the Minnesota miniature pig in 1949 at the Hormel Institute (USA), miniature pigs have been used as a large animal model in medical studies for scientific, economic, and ethical reasons. The oral maxillofacial region of miniature pigs is similar to that of humans in anatomy, development, physiology, pathophysiology, and disease occurrence. In this review, we describe the anatomical characteristics of the oral maxillofacial system of the miniature pig, established models of oral diseases in this animal, and other uses of the miniature pig in orofacial research.
Collapse
Affiliation(s)
- S Wang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy, Capital Medical University School of Stomatology, Beijing, China.
| | | | | | | |
Collapse
|