1
|
Machida R, Ogawa T, Min Soe K, Moriyama K. Nonsense-mediated mRNA decay affects hyperactive root formation in oculo-facio-cardio-dental syndrome via up-frameshift protein 1. J Oral Biosci 2024; 66:225-231. [PMID: 38244688 DOI: 10.1016/j.job.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVES Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked genetic disorder caused by mutations in the BCL6 co-repressor (BCOR) and is mainly characterized by radiculomegaly (elongated dental roots). All BCOR mutations reported to date have been associated with premature termination codons, indicating that nonsense-mediated mRNA decay (NMD) might play a vital role in the pathogenesis of OFCD syndrome. However, the molecular mechanisms underlying NMD remain unclear. In this study, we investigated the involvement of up-frameshift protein 1 (UPF1), which plays a central role in NMD, in the hyperactive root formation caused by BCOR mutations. METHODS Periodontal ligament cells, isolated from a Japanese woman with a c.3668delC frameshift mutation in BCOR, and primary human periodontal ligament fibroblasts (HPdLFs) were used for an RNA immunoprecipitation assay to confirm the binding of UPF1 to mutated BCOR. Additionally, the effects of UPF1 on the BCOR transcription levels and corresponding gene expression were determined by performing relative quantitative real-time polymerase chain reactions. RESULTS RNA immunoprecipitation revealed that UPF1 binds to exon 9 of mutated BCOR. Additionally, UPF1 knockdown via siRNA upregulated the transcription of BCOR, whereas overexpression of wild-type and mutated BCOR with the same frameshift mutation in HPdLFs altered bone morphogenetic protein 2 (BMP2) expression. CONCLUSIONS Our findings indicate that BCOR mutations regulate the transcription of BCOR via UPF1, which may in turn regulate the expression of BMP2. NMD, caused by a c.3668delC mutation, potentially leads to an OFCD syndrome phenotype, including elongated dental roots.
Collapse
Affiliation(s)
- Ryoto Machida
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Takuya Ogawa
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Kyaw Min Soe
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
2
|
Mu H, Liu X, Geng S, Su D, Chang H, Li L, Jin H, Wang X, Li Y, Zhang B, Xie X. Epithelial Bone Morphogenic Protein 2 and 4 Are Indispensable for Tooth Development. Front Physiol 2021; 12:660644. [PMID: 34483952 PMCID: PMC8415269 DOI: 10.3389/fphys.2021.660644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
The Bmp2 and Bmp4 expressed in root mesenchyme were essential for the patterning and cellular differentiation of tooth root. The role of the epithelium-derived Bmps in tooth root development, however, had not been reported. In this study, we found that the double abrogation of Bmp2 and Bmp4 from mouse epithelium caused short root anomaly (SRA). The K14-cre;Bmp2f/f;Bmp4f/f mice exhibited a persistent Hertwig’s Epithelial Root Sheath (HERS) with the reduced cell death, and the down-regulated BMP-Smad4 and Erk signaling pathways. Moreover, the Shh expression in the HERS, the Shh-Gli1 signaling, and Nfic expression in the root mesenchyme of the K14-cre;Bmp2f/f;Bmp4f/f mice were also decreased, indicating a disrupted epithelium- mesenchyme interaction between HERS and root mesenchyme. Such disruption suppressed the Osx and Dspp expression in the root mesenchyme, indicating an impairment on the differentiation and maturation of root odontoblasts. The impaired differentiation and maturation of root odontoblasts could be rescued partially by transgenic Dspp. Therefore, although required in a low dosage and with a functional redundancy, the epithelial Bmp2 and Bmp4 were indispensable for the HERS degeneration, as well as the differentiation and maturation of root mesenchyme.
Collapse
Affiliation(s)
- Haibin Mu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuoshuo Geng
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dian Su
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heran Chang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiaohua Xie
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
dos Santos ÍGD, de Oliveira Mendes TA, Silva GAB, Reis AMS, Monteiro-Vitorello CB, Schaker PDC, Herai RH, Fabotti ABC, Coutinho LL, Jorge EC. Didelphis albiventris: an overview of unprecedented transcriptome sequencing of the white-eared opossum. BMC Genomics 2019; 20:866. [PMID: 31730444 PMCID: PMC6858782 DOI: 10.1186/s12864-019-6240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.
Collapse
Affiliation(s)
- Íria Gabriela Dias dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Amanda Maria Sena Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Patricia Dayane Carvalho Schaker
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | | | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
4
|
Lu X, Yu F, Liu J, Cai W, Zhao Y, Zhao S, Liu S. The epidemiology of supernumerary teeth and the associated molecular mechanism. Organogenesis 2017; 13:71-82. [PMID: 28598258 DOI: 10.1080/15476278.2017.1332554] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Supernumerary teeth are common clinical dental anomalies. Although various studies have provided abundant information regarding genes and signaling pathways involved in tooth morphogenesis, which include Wnt, FGF, BMP, and Shh, the molecular mechanism of tooth formation, especially for supernumerary teeth, is still unclear. In the population, some cases of supernumerary teeth are sporadic, while others are syndrome-related with familial hereditary. The prompt and accurate diagnosis of syndrome related supernumerary teeth is quite important for some distinctive disorders. Mice are the most commonly used model system for investigating supernumerary teeth. The upregulation of Wnt and Shh signaling in the dental epithelium results in the formation of multiple supernumerary teeth in mice. Understanding the molecular mechanism of supernumerary teeth is also a component of understanding tooth formation in general and provides clinical guidance for early diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Xi Lu
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Fang Yu
- b Department of Pediatric Dentistry , School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Shanghai , P. R. China
| | - Junjun Liu
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Wenping Cai
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Yumei Zhao
- b Department of Pediatric Dentistry , School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Shanghai , P. R. China
| | - Shouliang Zhao
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Shangfeng Liu
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| |
Collapse
|
5
|
Dos Santos ÍGD, Jorge EC, Copola AGL, Bertassoli BM, Goes AMD, Silva GAB. FGF2, FGF3 and FGF4 expression pattern during molars odontogenesis in Didelphis albiventris. Acta Histochem 2017; 119:129-141. [PMID: 28012573 DOI: 10.1016/j.acthis.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022]
Abstract
Odontogenesis is guided by a complex signaling cascade in which several molecules, including FGF2-4, ensure all dental groups development and specificity. Most of the data on odontogenesis derives from rodents, which does not have all dental groups. Didelphis albiventris is an opossum with the closest dentition to humans, and the main odontogenesis stages occur when the newborns are in the pouch. In this study, D. albiventris postnatals were used to characterize the main stages of their molars development; and also to establish FGF2, FGF3 and FGF4 expression pattern. D. albiventris postnatals were processed for histological and indirect immunoperoxidase analysis of the tooth germs. Our results revealed similar dental structures between D. albiventris and mice. However, FGF2, FGF3 and FGF4 expression patterns were observed in a larger number of dental structures, suggesting broader functions for these molecules in this opossum species. The knowledge of the signaling that determinates odontogenesis in an animal model with complete dentition may contribute to the development of therapies for the replacement of lost teeth in humans. This study may also contribute to the implementation of D. albiventris as model for Developmental Biology studies.
Collapse
Affiliation(s)
- Íria Gabriela Dias Dos Santos
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Erika Cristina Jorge
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Aline Gonçalves Lio Copola
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Bruno Machado Bertassoli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Alfredo Miranda de Goes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Gerluza Aparecida Borges Silva
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Xie X, Liu C, Zhang H, Jani PH, Lu Y, Wang X, Zhang B, Qin C. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression. Sci Rep 2016; 6:25364. [PMID: 27146352 PMCID: PMC4857113 DOI: 10.1038/srep25364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/13/2016] [Indexed: 01/10/2023] Open
Abstract
Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling.
Collapse
Affiliation(s)
- Xiaohua Xie
- Department of Stomatology, and Institute of Hard Tissue Development and Regeneration, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, USA
| | - Chao Liu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, USA.,Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, USA
| | - Priyam H Jani
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, USA
| | - Bin Zhang
- Department of Stomatology, and Institute of Hard Tissue Development and Regeneration, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150001, China
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, USA
| |
Collapse
|
7
|
Kanyama M, Shimo T, Sugito H, Nagayama M, Kuboki T, Pacifici M, Koyama E. Regulation of CCN2 gene expression and possible roles in developing tooth germs. Arch Oral Biol 2013; 58:1659-66. [PMID: 24112732 DOI: 10.1016/j.archoralbio.2013.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 11/24/2022]
Abstract
CCN proteins are extracellular and cell-associated molecules involved in several developmental processes, but their expression patterns and regulation in tooth development remain unclear. Here we first determined the expression patterns of CCN genes in mouse tooth germs. We found that at early stages CCN2 was detected in dental lamina, dental mesenchyme, and primary enamel knot, while other CCN family members were expressed broadly. By the bell stage, all members were expressed in differentiating odontoblasts and ameloblasts, but CCN1 and CCN2 transcripts were conspicuous in differentiating osteoblasts in dental follicle. Next, we asked what signalling molecules regulate CCN2 expression and what roles CCN2 may have. We found that upon surgical removal of dental epithelium CCN2 was not longer expressed in dental mesenchyme in cultured bud stage germs. Implantation of beads pre-coated with BMPs and FGFs onto E12-13 mandibular explants induced CCN2 expression in dental mesenchyme. There was a dose-dependent effect of BMP-4 on CCN2 induction; a concentration of 100 ng/μl was able to induce strong CCN2 expression while a minimum concentration of 25 ng/μl was needed to elicit appreciable expression. Importantly, Noggin treatment inhibited endogenous and BMP-induced CCN2 expression, verifying that CCN2 expression in developing tooth germs requires BMP signalling. Lastly, we found that rCCN2 stimulated proliferation in dental mesenchyme in a dose-dependent manner. Together, the data indicate that expression of CCN genes is spatio-temporally regulated in developing tooth germs. CCN2 expression appears to depend on epithelial and mesenchymal-derived signalling factors, and CCN2 can elicit strong proliferation in dental mesenchyme.
Collapse
Affiliation(s)
- Manabu Kanyama
- Department of Oral and Maxillofacial Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Li Z, Yu M, Tian W. An inductive signalling network regulates mammalian tooth morphogenesis with implications for tooth regeneration. Cell Prolif 2013; 46:501-8. [PMID: 23952789 DOI: 10.1111/cpr.12051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/18/2013] [Indexed: 12/15/2022] Open
Abstract
Sequential and reciprocal epithelial-mesenchymal interactions, essential throughout such aspects of tooth morphogenesis as patterning, size and number of teeth, involves a well-ordered series of inductive and permissive signals that exert global control over cell proliferation, differentiation and organogenesis. In particular, growth factors, transcription factors and their corresponding receptors, as well as other soluble morphogens, make up a regulatory network at the molecular level that synergistically or antagonistically controls intra-/inter-cellular signal transduction during odontogenesis. This review summarizes recent advances in the study of crucial signalling pathways, for example of BMPs, Wnt, Notch, Shh and FGF, with emphasis on the potential integrated signalling network responsible for tooth formation. Our work probes into the complexity of these inductive signalling pathways to promote the understanding of tooth regeneration. Additionally, our study provides further insights into therapeutic strategies for various dental abnormalities in patterning and number, such as tooth agenesis and supernumerary teeth.
Collapse
Affiliation(s)
- Z Li
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | | | | |
Collapse
|
9
|
Wang S, Mu J, Fan Z, Yu Y, Yan M, Lei G, Tang C, Wang Z, Zheng Y, Yu J, Zhang G. Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res 2012; 8:346-56. [PMID: 22286010 DOI: 10.1016/j.scr.2011.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 01/09/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) plays an important role in the regulation of tooth root development, and stem cells from apical papilla (SCAPs) are responsible for the formation of root pulp and dentin. To date, it remains unclear whether IGF-1 can regulate the function of SCAPs. In this study, SCAPs were isolated and purified from human immature root apex, and stimulated by 100 ng/mL exogenous IGF-1. The effects of IGF-1 on the proliferation and differentiation of SCAPs were subsequently investigated. IGF-1 treated SCAPs presented the morphological and ultrastructural changes. Cell proliferation, alkaline phosphatase (ALP) activity and mineralization capacity of SCAPs were increased by IGF-1. Western blot and quantitative RT-PCR analyses further demonstrated that the expression of osteogenic-related proteins and genes (e.g., alkaline phosphatase, runt-related transcription factor 2, osterix, and osteocalcin) was significantly up-regulated in IGF-1 treated SCAPs, whereas the expression of odontoblast-specific markers (e.g., dentin sialoprotein and dentin sialophosphoprotein) was down-regulated by IGF-1. In vivo results revealed that IGF-1 treated SCAPs mostly gave birth to bone-like tissues while untreated SCAPs mainly generated dentin-pulp complex-like structures after transplantation. The present study revealed that IGF-1 can promote the osteogenic differentiation and osteogenesis capacity of SCAPs, but weaken their odontogenic differentiation and dentinogenesis capability, indicating that IGF-1 treated SCAPs can be used as a potential candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways. Histochem Cell Biol 2012; 137:513-25. [PMID: 22227802 DOI: 10.1007/s00418-011-0908-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2011] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a potent mitogenic protein which can enhance the osteogenic differentiation of periodontal ligament (PDL) fibroblasts. However, it remains unclear whether IGF-1 can stimulate the osteogenic differentiation and osteogenesis of human periodontal ligament stem cells (PDLSCs). In this study, STRO-1(+) PDLSCs were isolated from human PDL tissues, treated with IGF-1, and their osteogenic capacity was investigated in vitro and in vivo. Dimethyl-thiazol-diphenyl tetrazolium bromide assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 can stimulate the proliferation ability of PDLSCs and 100 ng/mL is the optimal concentration. Exogenous IGF-1 can modify the ultrastructure, enhance the alkaline phosphatase activity, the mineralization ability of PDLSCs, and increase the expression of osteogenic markers (runt-related transcription factor 2, osterix, and osteocalcin) at mRNA and protein levels. In vivo transplantation illustrated that IGF-1 treated implants generated more mineralized tissues, and presented stronger expression of RUNX2, OSX, and OCN than control group. Moreover, the expression of phosphor-ERK and phosphor-JNK in these stem cells was upregulated by IGF-1, indicating that MAPK signaling pathway was activated during the osteogenic differentiation of PDLSCs mediated by IGF-1. Together, the results showed that IGF-1 can promote the osteogenic differentiation and osteogenesis of STRO-1(+) PDLSCs via ERK and JNK MAPK pathway, suggesting that IGF-1 is a potent agent for stem cell-based periodontal tissue regeneration.
Collapse
|
11
|
Catón J, Tucker AS. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 2010; 214:502-15. [PMID: 19422427 DOI: 10.1111/j.1469-7580.2008.01014.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The integument forms a number of different types of mineralized element, including dermal denticles, scutes, ganoid scales, elasmoid scales, fin rays and osteoderms found in certain fish, reptiles, amphibians and xenarthran mammals. To this list can be added teeth, which are far more widely represented and studied than any of the other mineralized elements mentioned above, and as such can be thought of as a model mineralized system. In recent years the focus for studies on tooth development has been the mouse, with a wealth of genetic information accrued and the availability of cutting edge techniques. It is the mouse dentition that this review will concentrate on. The development of the tooth will be followed, looking at what controls the shape of the tooth and how signals from the mesenchyme and epithelium interact to lead to formation of a molar or incisor. The number of teeth generated will then be investigated, looking at how tooth germ number can be reduced or increased by apoptosis, fusion of tooth germs, creation of new tooth germs, and the generation of additional teeth from existing tooth germs. The development of mineralized tissue will then be detailed, looking at how the asymmetrical deposition of enamel is controlled in the mouse incisor. The continued importance of epithelial-mesenchymal interactions at these later stages of tooth development will also be discussed. Tooth anomalies and human disorders have been well covered by recent reviews, therefore in this paper we wish to present a classical review of current knowledge of tooth development, fitting together data from a large number of recent research papers to draw general conclusions about tooth development.
Collapse
Affiliation(s)
- Javier Catón
- Department of Craniofacial Development and Orthodontics, King's College London, Guy's Hospital, UK
| | | |
Collapse
|